NC function theory, NC convex sets, and operator theory
Lecture II: Algebras of bounded analytic nc functions on nc varieties

Orr Shalit

Technion - Israel Institute of Technology

Based on a joint work with Guy Salomon and Eli Shamovich

June 2018
Noncommutative functions and varieties

The nc ball and nc functions

nc sets

- $\mathcal{M}^d := \bigcup_{n=1}^{\infty} M_n^d$ where $d \in \mathbb{N}$.

nc functions

- f is graded:

- f respects direct sums:

- f respects similarities:
The nc ball and nc functions

nc sets

- \(\mathcal{M}^d := \bigcup_{n=1}^\infty M_n^d \) where \(d \in \mathbb{N} \).
- A **nc set** is a set \(\Omega \subseteq \mathcal{M}^d \) closed under direct sums and unitary conjugation.
nc sets

- $\mathbb{M}^d := \bigcup_{n=1}^{\infty} M_n^d$ where $d \in \mathbb{N}$.
- A nc set is a set $\Omega \subseteq \mathbb{M}^d$ closed under direct sums and unitary conjugation.
- The nc unit ball is $\mathcal{B}_d := \{ X \in \mathbb{M}^d : \|X\| < 1 \}$, where
 \[
 \|X\| := \| \sum_{j=1}^{d} X_j X^*_j \|^{\frac{1}{2}}
 \]
The nc ball and nc functions

nc sets

- $\mathbb{M}^d := \bigcup_{n=1}^{\infty} M_n^d$ where $d \in \mathbb{N}$.
- A nc set is a set $\Omega \subseteq \mathbb{M}^d$ closed under direct sums and unitary conjugation.
- The nc unit ball is $\mathcal{B}_d := \{ X \in \mathbb{M}^d : \|X\| < 1 \}$, where
 \[
 \|X\| := \| \sum_{j=1}^{d} X_j X_j^* \|^{\frac{1}{2}}
 \]

nc functions

A function $f : \Omega \rightarrow \mathbb{M}^e$ is a nc function if

- f is graded: $X \in \Omega(n) \Rightarrow f(X) \in M_n^e$
Noncommutative functions and varieties

The nc ball and nc functions

nc sets

- \(\mathcal{M}^d := \bigcup_{n=1}^{\infty} M_n^d \) where \(d \in \mathbb{N} \).
- A nc set is a set \(\Omega \subseteq \mathcal{M}^d \) closed under direct sums and unitary conjugation.
- The nc unit ball is \(\mathcal{B}_d := \{ X \in \mathcal{M}^d : \| X \| < 1 \} \), where
 \[
 \| X \| := \| \sum_{j=1}^{d} X_j X_j^* \|^{\frac{1}{2}}
 \]

nc functions

A function \(f : \Omega \to \mathcal{M}^e \) is a nc function if

- \(f \) is graded: \(X \in \Omega(n) \Rightarrow f(X) \in M_n^e \)
- \(f \) respects direct sums: \(f(X \oplus Y) = f(X) \oplus f(Y) \)
The nc ball and nc functions

nc sets
- $\mathbb{M}^d := \bigcup_{n=1}^{\infty} M_n^d$ where $d \in \mathbb{N}$.
- A nc set is a set $\Omega \subseteq \mathbb{M}^d$ closed under direct sums and unitary conjugation.
- The nc unit ball is $\mathcal{B}_d := \{X \in \mathbb{M}^d : \|X\| < 1\}$, where
 \[\|X\| := \| \sum_{j=1}^{d} X_j X_j^* \|^{\frac{1}{2}}\]

nc functions
A function $f : \Omega \to \mathbb{M}^e$ is a nc function if
- f is graded: $X \in \Omega(n) \Rightarrow f(X) \in M_n^e$
- f respects direct sums: $f(X \oplus Y) = f(X) \oplus f(Y)$
- f respects similarities: $f(S^{-1}XS) = S^{-1}f(X)S$
Let E be a set of bounded nc functions $\mathcal{B}_d \to \mathbb{M}^1$.
Let \mathcal{E} be a set of bounded nc functions $\mathcal{B}_d \to \mathbb{M}^1$.

- **The nc (analytic) variety (in the nc unit ball)** generated by \mathcal{E} is

 \[\mathcal{V} = \mathcal{V}(\mathcal{E}) = \{ X \in \mathcal{B}_d : f(X) = 0 \text{ for all } f \in \mathcal{E} \}. \]
Let \mathcal{E} be a set of bounded nc functions $\mathcal{B}_d \to \mathbb{M}^1$.

- The nc (analytic) variety (in the nc unit ball) generated by \mathcal{E} is

$$\mathcal{V} = \mathcal{V}(\mathcal{E}) = \{ X \in \mathcal{B}_d : f(X) = 0 \text{ for all } f \in \mathcal{E} \}.$$

- $f : \mathcal{V} \to \mathbb{M}^e$ (where $\mathcal{V} \subseteq \mathcal{B}_d$ is a nc variety) is nc holomorphic if it is a locally bounded nc function.
nc analytic varieties

Let \mathcal{E} be a set of bounded nc functions $\mathcal{B}_d \to \mathbb{M}^1$.

- The **nc (analytic) variety** (in the nc unit ball) generated by \mathcal{E} is

 $$\mathcal{V} = \mathcal{V}(\mathcal{E}) = \{ X \in \mathcal{B}_d : f(X) = 0 \text{ for all } f \in \mathcal{E} \}.$$

- $f : \mathcal{V} \to \mathbb{M}^e$ (where $\mathcal{V} \subseteq \mathcal{B}_d$ is a nc variety) is **nc holomorphic** if it is a locally bounded nc function.

- $H^\infty(\mathcal{V}) =$ the **algebra of bounded holomorphic functions** from \mathcal{V} to \mathbb{M}^1, with norm $\| f \| = \sup_{X \in \mathcal{V}} \| f(X) \|$.
nc analytic varieties

Let \mathcal{E} be a set of bounded nc functions $\mathcal{B}_d \rightarrow \mathbb{M}^1$.

- The nc (analytic) variety (in the nc unit ball) generated by \mathcal{E} is
 \[\mathcal{V} = \mathcal{V}(\mathcal{E}) = \{ X \in \mathcal{B}_d : f(X) = 0 \text{ for all } f \in \mathcal{E} \}. \]

- $f : \mathcal{V} \rightarrow \mathbb{M}^e$ (where $\mathcal{V} \subseteq \mathcal{B}_d$ is a nc variety) is nc holomorphic if it is a locally bounded nc function.

- $H^\infty(\mathcal{V}) =$ the algebra of bounded holomorphic functions from \mathcal{V} to \mathbb{M}^1, with norm $\|f\| = \sup_{X \in \mathcal{V}} \|f(X)\|$.

Example: $H^\infty(\mathcal{B}_d) =$ $H^\infty(C^d)$.
nc analytic varieties

Let \mathcal{E} be a set of bounded nc functions $\mathcal{B}_d \to \mathbb{M}^1$.

- The nc (analytic) variety (in the nc unit ball) generated by \mathcal{E} is
 \[\mathcal{V} = \mathcal{V}(\mathcal{E}) = \{ X \in \mathcal{B}_d : f(X) = 0 \text{ for all } f \in \mathcal{E} \}. \]

- $f : \mathcal{V} \to \mathbb{M}^e$ (where $\mathcal{V} \subseteq \mathcal{B}_d$ is a nc variety) is nc holomorphic if it is a locally bounded nc function.

- $H^\infty(\mathcal{V}) = \text{the algebra of bounded holomorphic functions from } \mathcal{V} \text{ to } \mathbb{M}^1$, with norm $\| f \| = \sup_{X \in \mathcal{V}} \| f(X) \|$.

Example: $H^\infty(\mathcal{B}_d) = H^\infty(B(\mathcal{X})_1^d) = \mathcal{L}_d = H^\infty(\mathbb{C}^d)$.

Recall:

\[H^\infty(\mathcal{V}) = H^\infty(\mathcal{B}_d)|_{\mathcal{V}} \]
nc analytic varieties

Let \mathcal{E} be a set of bounded nc functions $\mathcal{B}_d \to \mathbb{M}^1$.

- The nc (analytic) variety (in the nc unit ball) generated by \mathcal{E} is

$$\mathcal{V} = \mathcal{V}(\mathcal{E}) = \{ X \in \mathcal{B}_d : f(X) = 0 \text{ for all } f \in \mathcal{E} \}.$$

- $f : \mathcal{V} \to \mathcal{M}$ (where $\mathcal{V} \subseteq \mathcal{B}_d$ is a nc variety) is nc holomorphic if it is a locally bounded nc function.

- $H^\infty(\mathcal{V}) =$ the algebra of bounded holomorphic functions from \mathcal{V} to \mathcal{M}, with norm $\| f \| = \sup_{X \in \mathcal{V}} \| f(X) \|$.

Example: $H^\infty(\mathcal{B}_d) = H^\infty(\mathcal{B}(\mathcal{X})^d_1) = \mathcal{L}_d = H^\infty(\mathbb{C}^d)$.

Recall:

$$H^\infty(\mathcal{V}) = H^\infty(\mathcal{B}_d)|_{\mathcal{V}}$$

$$H^\infty(\mathcal{V}) = H^\infty(\mathcal{B}_d)/\mathcal{J}_{\mathcal{V}}$$
Classification of the algebras $H^\infty(\mathcal{V})$

The goal:
To classify the algebras $H^\infty(\mathcal{V})$ in terms of the geometry of the variety \mathcal{V}.

Why care:
(i) These algebras (and their kin $A(\mathcal{V})$) have independently drawn interest.
(ii) The problem applies, applies to, and inspires nc function theory.

"Geometry" — certain equivalence of nc varieties $\mathcal{V} \hookrightarrow \mathcal{W} \cong \mathcal{B}^d$.

Biholomorphism: there exist nc holomorphic $f: \mathcal{B}^d \to \mathcal{M}^d$ and $g: \mathcal{B}^d \to \mathcal{M}^d$ such that $g \circ f = \text{id}_{\mathcal{V}}$ and $f \circ g = \text{id}_{\mathcal{W}}$.

Ball-biholomorphism: there exist nc holomorphic $f: \mathcal{B}^d \to \mathcal{B}^d$ and $g: \mathcal{B}^d \to \mathcal{B}^d$ such that $g \circ f = \text{id}_{\mathcal{V}}$ and $f \circ g = \text{id}_{\mathcal{W}}$.

Conformal equivalence: there exists $\gamma \in \text{Aut}(\mathcal{B}^d)$ such that $\gamma(V) = \mathcal{W}$.

Classification of the algebras $H^\infty(\mathcal{V})$

The goal:
To classify the algebras $H^\infty(\mathcal{V})$ in terms of the **geometry** of the variety \mathcal{V}.

Why care:
(i) These algebras (and their kin $A(\mathcal{V})$) have drawn interest independently.
Classification of the algebras $H^\infty(\mathcal{V})$

The goal:
To classify the algebras $H^\infty(\mathcal{V})$ in terms of the geometry of the variety \mathcal{V}.

Why care:
(i) These algebras (and their kin $(A(\mathcal{V}))$) have drawn interest independently.
(ii) The problem applies, applies to, and inspires nc function theory.
Classification of the algebras $H^\infty(\mathcal{V})$

The goal:
To classify the algebras $H^\infty(\mathcal{V})$ in terms of the geometry of the variety \mathcal{V}.

Why care:
(i) These algebras (and their kin $A(\mathcal{V})$) have drawn interest independently.
(ii) The problem applies, applies to, and inspires nc function theory.

“Geometry” — certain equivalence of nc varieties $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$
Classification of the algebras $H^\infty(\mathcal{V})$

The goal:
To classify the algebras $H^\infty(\mathcal{V})$ in terms of the \textit{geometry} of the variety \mathcal{V}.

Why care:
(i) These algebras (and their kin $\mathcal{A}(\mathcal{V}))$ have drawn interest independently.
(ii) The problem applies, applies to, and inspires nc function theory.

"Geometry" — certain equivalence of nc varieties $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$

\textbf{Biholomorphism:} there exist \textit{nc holo.} $f: \mathcal{B}_d \to \mathcal{M}^d$ and $g: \mathcal{B}_d \to \mathcal{M}^d$ such that $g \circ f|_\mathcal{V} = \text{id}_\mathcal{V}$ and $f \circ g|_\mathcal{W} = \text{id}_\mathcal{W}$.
Classification of the algebras $H^\infty(\mathcal{V})$

The goal:
To classify the algebras $H^\infty(\mathcal{V})$ in terms of the geometry of the variety \mathcal{V}.

Why care:
(i) These algebras (and their kin $A(\mathcal{V})$) have drawn interest independently.
(ii) The problem applies, applies to, and inspires nc function theory.

"Geometry" — certain equivalence of nc varieties $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$

Biholomorphism: there exist nc holo. $f : \mathcal{B}_d \to \mathbb{M}^d$ and $g : \mathcal{B}_d \to \mathbb{M}^d$ such that $g \circ f |_{\mathcal{W}} = \text{id}_{\mathcal{W}}$ and $f \circ g |_{\mathcal{W}} = \text{id}_{\mathcal{W}}$.

Ball-biholomorphism: there exist nc holo. $f : \mathcal{B}_d \to \mathcal{B}_d$ and $g : \mathcal{B}_d \to \mathcal{B}_d$ such that $g \circ f |_{\mathcal{W}} = \text{id}_{\mathcal{W}}$ and $f \circ g |_{\mathcal{W}} = \text{id}_{\mathcal{W}}$.
Classification of the algebras $H^\infty(\mathcal{V})$

The goal:
To classify the algebras $H^\infty(\mathcal{V})$ in terms of the geometry of the variety \mathcal{V}.

Why care:
(i) These algebras (and their kin $A(\mathcal{V})$) have drawn interest independently.
(ii) The problem applies, applies to, and inspires nc function theory.

"Geometry" — certain equivalence of nc varieties $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$

Biholomorphism: there exist nc holo. $f : \mathcal{B}_d \to \mathbb{M}^d$ and $g : \mathcal{B}_d \to \mathbb{M}^d$ such that $g \circ f|_\mathcal{V} = \text{id}_\mathcal{V}$ and $f \circ g|_\mathcal{W} = \text{id}_\mathcal{W}$.

Ball-biholomorphism: there exist nc holo. $f : \mathcal{B}_d \to \mathcal{B}_d$ and $g : \mathcal{B}_d \to \mathcal{B}_d$ such that $g \circ f|_\mathcal{V} = \text{id}_\mathcal{V}$ and $f \circ g|_\mathcal{W} = \text{id}_\mathcal{W}$.

Conformal equivalence: there exists $\varphi \in \text{Aut}(\mathcal{B}_d)$ such that $\varphi(\mathcal{V}) = \mathcal{W}$.
Classification of the algebras $H^\infty(\mathcal{V})$

The goal:
To classify the algebras $H^\infty(\mathcal{V})$ in terms of the \textit{geometry} of the variety \mathcal{V}.

Why care:
(i) These algebras (and their kin $(A(\mathcal{V}))$ have drawn interest indepently.
(ii) The problem applies, applies to, and inspires nc function theory.

"Geometry" — certain equivalence of nc varieties $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$

\textbf{Biholomorphism:} there exist nc holo. $f : \mathcal{B}_d \rightarrow \mathcal{M}^d$ and $g : \mathcal{B}_d \rightarrow \mathcal{M}^d$ such that $g \circ f\mid_\mathcal{V} = \text{id}_\mathcal{V}$ and $f \circ g\mid_\mathcal{W} = \text{id}_\mathcal{W}$.

\textbf{Ball-biholomorphism:} there exist nc holo. $f : \mathcal{B}_d \rightarrow \mathcal{B}_d$ and $g : \mathcal{B}_d \rightarrow \mathcal{B}_d$ such that $g \circ f\mid_\mathcal{V} = \text{id}_\mathcal{V}$ and $f \circ g\mid_\mathcal{W} = \text{id}_\mathcal{W}$.

\textbf{Conformal equivalence:} there exists $\varphi \in \text{Aut}(\mathcal{B}_d)$ such that $\varphi(\mathcal{V}) = \mathcal{W}$.
Classification of the algebras $H^\infty(\mathfrak{V})$

The goal:
To classify the algebras $H^\infty(\mathfrak{V})$ in terms of the geometry of the variety \mathfrak{V}.

Why care:
(i) These algebras (and their kin $(A(\mathfrak{V}))$) have drawn interest independently.
(ii) The problem applies, applies to, and inspires nc function theory.

"Geometry" — certain equivalence of nc varieties $\mathfrak{V}, \mathfrak{W} \subseteq \mathcal{B}_d$

Biholomorphism: there exist nc holo. $f : \mathcal{B}_d \rightarrow \mathcal{M}^d$ and $g : \mathcal{B}_d \rightarrow \mathcal{M}^d$ such that $g \circ f|_{\mathfrak{V}} = \text{id}_{\mathfrak{V}}$ and $f \circ g|_{\mathfrak{W}} = \text{id}_{\mathfrak{W}}$.

Ball-biholomorphism: there exist nc holo. $f : \mathcal{B}_d \rightarrow \mathcal{B}_d$ and $g : \mathcal{B}_d \rightarrow \mathcal{B}_d$ such that $g \circ f|_{\mathfrak{V}} = \text{id}_{\mathfrak{V}}$ and $f \circ g|_{\mathfrak{W}} = \text{id}_{\mathfrak{W}}$.

Conformal equivalence: there exists $\varphi \in \text{Aut}(\mathcal{B}_d)$ such that $\varphi(\mathfrak{V}) = \mathfrak{W}$.
Classification of the algebras $H^\infty(\mathcal{V})$

The goal:
To classify the algebras $H^\infty(\mathcal{V})$ in terms of the geometry of the variety \mathcal{V}.

Why care:
(i) These algebras (and their kin $(A(\mathcal{V}))$ have drawn interest independently.
(ii) The problem applies, applies to, and inspires nc function theory.

"Geometry" — certain equivalence of nc varieties $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$

Biholomorphism: there exist nc holo. $f : \mathcal{B}_d \to \mathbb{M}^d$ and $g : \mathcal{B}_d \to \mathbb{M}^d$ such that $g \circ f|_{\mathcal{V}} = \text{id}_{\mathcal{V}}$ and $f \circ g|_{\mathcal{W}} = \text{id}_{\mathcal{W}}$.

Ball-biholomorphism: there exist nc holo. $f : \mathcal{B}_d \to \mathcal{B}_d$ and $g : \mathcal{B}_d \to \mathcal{B}_d$ such that $g \circ f|_{\mathcal{V}} = \text{id}_{\mathcal{V}}$ and $f \circ g|_{\mathcal{W}} = \text{id}_{\mathcal{W}}$.

Conformal equivalence: there exists $\varphi \in \text{Aut}(\mathcal{B}_d)$ such that $\varphi(\mathcal{V}) = \mathcal{W}$.
The isomorphism problem

- conformal equivalence
- ball-biholomorphism
- completely isometric isomorphism
- completely bounded isomorphism
- isometric isomorphism
- bounded isomorphism
- weak-∗ continuous isomorphism
- algebraic isomorphism
The isomorphism problem

Completely isometric isomorphisms

- conformal equivalence
- ball-biholomorphism
- completely bounded isomorphism
- isometric isomorphism
- bounded isomorphism
- weak-* continuous isomorphism
- algebraic isomorphism
The isomorphism problem
Theorem (Salomon-S-Shamovich ’17)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be nc varieties. There is a completely isometric isomorphism $\alpha : H^\infty(\mathcal{V}) \to H^\infty(\mathcal{W})$ if and only if \mathcal{V} and \mathcal{W} are ball-biholomorphic.

Classically, a “ball-biholomorphism” is an automorphism. Is this true in the nc setting as well? Need to understand fixed points.

Theorem (Shamovich, later in ’17)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be nc varieties which contain a scalar point. If \mathcal{V} and \mathcal{W} are ball-biholomorphic, then \mathcal{V} and \mathcal{W} are conformally equivalent.
Theorem (Salomon-S-Shamovich ’17)

Let \(\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d \) be nc varieties. There is a completely isometric isomorphism \(\alpha : H^\infty(\mathcal{V}) \to H^\infty(\mathcal{W}) \) if and only if \(\mathcal{V} \) and \(\mathcal{W} \) are ball-biholomorphic.

Furthermore, in this case, the isomorphism of the algebras is given by a precomposition with the ball-biholomorphism:

\[
\alpha(f) = f \circ G , \quad f \in H^\infty(\mathcal{W})
\]
Completely isometric isomorphism

Theorem (Salomon-S-Shamovich ’17)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be nc varieties. There is a completely isometric isomorphism $\alpha : H^\infty(\mathcal{V}) \to H^\infty(\mathcal{W})$ if and only if \mathcal{V} and \mathcal{W} are **ball-biholomorphic**.

Furthermore, in this case, the isomorphism of the algebras is given by a precomposition with the **ball-biholomorphism**:

$$\alpha(f) = f \circ G , \ f \in H^\infty(\mathcal{V})$$

Classically, a “ball-biholomorphism" is an automorphism. Is this true in the nc setting as well? Need to understand fixed points.
Theorem (Salomon-S-Shamovich ’17)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be nc varieties. There is a completely isometric isomorphism $\alpha : H^\infty(\mathcal{V}) \to H^\infty(\mathcal{W})$ if and only if \mathcal{V} and \mathcal{W} are ball-biholomorphic.

Furthermore, in this case, the isomorphism of the algebras is given by a precomposition with the ball-biholomorphism:

$$\alpha(f) = f \circ G, \quad f \in H^\infty(\mathcal{V})$$

Classically, a “ball-biholomorphism" is an automorphism. Is this true in the nc setting as well? Need to understand fixed points.

Theorem (Shamovich, later in ’17)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be nc varieties which contain a scalar point. If \mathcal{V} and \mathcal{W} are ball-biholomorphic \Rightarrow conformally equivalent.
Proof ingredients

Theorem (Salomon-S-Shamovich, ’17, based on Davidson-Pitts ’98)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{M})) \rightarrow \overline{\mathcal{B}}_d \]
Proof ingredients

Theorem (Salomon-S-Shamovich, ’17, based on Davidson-Pitts ’98)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{V})) \rightarrow \overline{\mathcal{B}}_d \]

\(\pi\) is injective on weak-\(*\) representations and

\[\text{Rep}_{cc}^w(H^\infty(\mathcal{V})) \cap \mathcal{B}_d = \mathcal{V} \]
Theorem (Salomon-S-Shamovich, ’17, based on Davidson-Pitts ’98)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{V})) \to \overline{\mathcal{B}}_d \]

\(\pi \) is injective on weak-* representations and

\[\text{Rep}_{cc}^w(H^\infty(\mathcal{V})) \cap \mathcal{B}_d = \mathcal{V} \]

Proof: \(z = (z_1, \ldots, z_d) \) is a row contraction.
Proof ingredients

Theorem (Salomon-S-Shamovich, ’17, based on Davidson-Pitts ’98)

\[\pi : \text{Rep}_{cc}(\mathcal{H}^\infty(\mathcal{M})) \to \overline{\mathfrak{B}}_d \]

\(\pi \) is injective on weak-* representations and

\[\text{Rep}_{cc}^{w*}(\mathcal{H}^\infty(\mathcal{M})) \cap \mathfrak{B}_d = \mathcal{M} \]

Proof: \(z = (z_1, \ldots, z_d) \) is a row contraction. If \(\Phi : \mathcal{H}^\infty(\mathcal{M}) \to M_n \) is cc, then

\[\pi(z) := \Phi(z) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \overline{\mathfrak{B}}_d \]
Proof ingredients

Theorem (Salomon-S-Shamovich, ’17, based on Davidson-Pitts ’98)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{V})) \to \overline{\mathcal{B}}_d \]

\(\pi \) is injective on weak-* representations and

\[\text{Rep}_{cc}^{w*}(H^\infty(\mathcal{V})) \cap \mathcal{B}_d = \mathcal{V} \]

Proof: \(z = (z_1, \ldots, z_d) \) is a row contraction. If \(\Phi : H^\infty(\mathcal{V}) \to M_n \) is cc, then

\[\pi(z) := \Phi(z) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \overline{\mathcal{B}}_d \]

Imagine that \(\mathcal{V} \) is cut out by polynomial equations. Then \(z = z|_{\mathcal{V}} \) satisfies all equation determining \(\mathcal{V} \), so morally: \(\pi(z) = \Phi(z) \in \mathcal{V} \).
Proof ingredients (iso. given by composition with map)

\[\pi : \text{Rep}_{cc}(H^\infty(V)) \to \mathcal{B}_d : \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \mathcal{B}_d. \]
Proof ingredients (iso. given by composition with map)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{V})) \to \mathcal{B}_d : \quad \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \mathcal{B}_d. \]

Over \(X \in \mathcal{V} \) lies a unique rep: the weak-* cont. evaluation representation \(\Phi_X : f \mapsto f(X) \).
Proof ingredients (iso. given by composition with map)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{V})) \to \overline{\mathcal{B}}_d : \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \overline{\mathcal{B}}_d. \]

Over \(X \in \mathcal{V} \) lies a unique rep: the weak-* cont. evaluation representation \(\Phi_X : f \mapsto f(X) \).

If \(\alpha : H^\infty(\mathcal{V}) \to H^\infty(\mathcal{W}) \) is a c.i.i., define \(G : \mathcal{W} \to \overline{\mathcal{B}}_d \) by

\[G(W) = \pi \alpha^*(\Phi_W) \]
Completely isometric isomorphisms

Proof ingredients (iso. given by composition with map)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{W})) \to \overline{\mathcal{B}}_d : \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \overline{\mathcal{B}}_d. \]

Over \(X \in \mathcal{W} \) lies a unique rep: the weak-* cont. evaluation representation \(\Phi_X : f \mapsto f(X) \).

If \(\alpha : H^\infty(\mathcal{W}) \to H^\infty(\mathcal{M}) \) is a c.i.i., define \(G : \mathcal{M} \to \overline{\mathcal{B}}_d \) by

\[G(W) = \pi \alpha^*(\Phi_W) \]

By the nc extension theorem, \(G \) extends to \(G : \mathcal{B}_d \to \overline{\mathcal{B}}_d \), and in fact, by nc maximum principle \(G(\mathcal{B}_d) \subseteq \mathcal{B}_d \).
Proof ingredients (iso. given by composition with map)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathfrak{M})) \to \mathfrak{B}_d : \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \mathfrak{B}_d. \]

Over \(X \in \mathfrak{M} \) lies a unique rep: the weak-\(^*\) cont. evaluation representation \(\Phi_X : f \mapsto f(X) \).

If \(\alpha : H^\infty(\mathfrak{M}) \to H^\infty(\mathfrak{N}) \) is a c.i.i., define \(G : \mathfrak{M} \to \mathfrak{B}_d \) by

\[G(W) = \pi \alpha^*(\Phi_W) \]

By the nc extension theorem, \(G \) extends to \(G : \mathfrak{B}_d \to \mathfrak{B}_d \), and in fact, by nc maximum principle \(G(\mathfrak{B}_d) \subseteq \mathfrak{B}_d \).

It follows that \(\alpha^*(\Phi_W) = \Phi_{G(W)} \),
Completely isometric isomorphisms

Proof ingredients (iso. given by composition with map)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{W})) \to \overline{\mathcal{B}}_d : \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \overline{\mathcal{B}}_d. \]

Over \(X \in \mathcal{W} \) lies a unique rep: the weak-* cont. evaluation representation \(\Phi_X : f \mapsto f(X) \).

If \(\alpha : H^\infty(\mathcal{W}) \to H^\infty(\mathcal{W}) \) is a c.i.i., define \(G : \mathcal{W} \to \overline{\mathcal{B}}_d \) by

\[G(W) = \pi \alpha^*(\Phi_W) \]

By the nc extension theorem, \(G \) extends to \(G : \mathcal{B}_d \to \overline{\mathcal{B}}_d \), and in fact, by nc maximum principle \(G(\mathcal{B}_d) \subseteq \mathcal{B}_d \).

It follows that \(\alpha^*(\Phi_W) = \Phi_{G(W)} \), hence

\[\alpha(f)(W) \]
Completely isometric isomorphisms

Proof ingredients (iso. given by composition with map)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{M})) \to \mathfrak{B}_d : \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \mathfrak{B}_d. \]

Over \(X \in \mathcal{M} \) lies a unique rep: the weak-* cont. evaluation representation \(\Phi_X : f \mapsto f(X) \).

If \(\alpha : H^\infty(\mathcal{M}) \to H^\infty(\mathcal{N}) \) is a c.i.i., define \(G : \mathcal{N} \to \mathfrak{B}_d \) by

\[G(W) = \pi \alpha^*(\Phi_W) \]

By the nc extension theorem, \(G \) extends to \(G : \mathfrak{B}_d \to \mathfrak{B}_d \), and in fact, by nc maximum principle \(G(\mathfrak{B}_d) \subseteq \mathfrak{B}_d \).

It follows that \(\alpha^*(\Phi_W) = \Phi_{G(W)} \), hence

\[\alpha(f)(W) = \alpha^*(\Phi_W)(f) \]
Proof ingredients (iso. given by composition with map)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{W})) \to \overline{\mathcal{B}}_d : \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \overline{\mathcal{B}}_d. \]

Over \(X \in \mathcal{W} \) lies a unique rep: the weak-\(^*\) cont. evaluation representation \(\Phi_X : f \mapsto f(X) \).

If \(\alpha : H^\infty(\mathcal{W}) \to H^\infty(\mathcal{W}) \) is a c.i.i., define \(G : \mathcal{W} \to \overline{\mathcal{B}}_d \) by

\[G(W) = \pi \alpha^*(\Phi_W) \]

By the nc extension theorem, \(G \) extends to \(G : \mathcal{B}_d \to \overline{\mathcal{B}}_d \), and in fact, by nc maximum principle \(G(\mathcal{B}_d) \subseteq \mathcal{B}_d \).

It follows that \(\alpha^*(\Phi_W) = \Phi_{G(W)} \), hence

\[\alpha(f)(W) = \alpha^*(\Phi_W)(f) = \Phi_{G(W)}(f) = f \circ G(W) \]

for all \(f \in H^\infty(\mathcal{W}) \) and \(W \in \mathcal{W} \).
Proof ingredients (iso. given by composition with map)

\[\pi : \text{Rep}_{cc}(H^\infty(\mathcal{M})) \to \overline{\mathcal{B}}_d: \quad \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) \in \overline{\mathcal{B}}_d. \]

Over \(X \in \mathcal{M} \) lies a unique rep: the weak-* cont. evaluation representation \(\Phi_X : f \mapsto f(X) \).

If \(\alpha : H^\infty(\mathcal{M}) \to H^\infty(\mathcal{W}) \) is a c.i.i., define \(G : \mathcal{W} \to \overline{\mathcal{B}}_d \) by

\[G(W) = \pi \alpha^*(\Phi_W) \]

By some nc function theory, \(G \) extends to \(G : \mathcal{B}_d \to \overline{\mathcal{B}}_d \), and in fact \(G(\mathcal{B}_d) \subseteq \mathcal{B}_d \).

It follows that \(\alpha^*(\Phi_W) = \Phi_{G(W)} \), hence

\[\alpha(f)(W) = \alpha^*(\Phi_W)(f) = \Phi_{G(W)}(f) = f \circ G(W) \]

for all \(f \in H^\infty(\mathcal{M}) \) and \(W \in \mathcal{W} \).
The isomorphism problem – **homogeneous case**

- Conformal equivalence
- Ball-biholomorphism
- Completely isometric isomorphism
- Completely bounded isomorphism
- Isometric isomorphism
- Bounded isomorphism
- Weak-* continuous isomorphism
- Algebraic isomorphism
The isomorphism problem – **homogeneous case**

- Conformal equivalence
- Ball-biholomorphism
- Completely isometric isomorphism
- Completely bounded isomorphism
- Bounded isomorphism
- Weak-* continuous isomorphism
- Algebraic isomorphism
- Isometric isomorphism
The isomorphism problem – homogeneous case

- Conformal equivalence
- Ball-biholomorphism
- Completely isometric isomorphism
- Completely bounded isomorphism
- Isometric isomorphism
- Bounded isomorphism
- Weak-* continuous isomorphism
- Algebraic isomorphism
The isomorphism problem – **homogeneous case**

- Conformal equivalence
- Ball-biholomorphism
- Completely isometric isomorphism
- Completely bounded isomorphism
- Isometric isomorphism
- Bounded isomorphism
- Weak-* continuous isomorphism
- Algebraic isomorphism
Theorem (Salomon-S-Shamovich ’17)

Let $\mathcal{V} \subseteq \mathcal{B}_d$ and $\mathcal{W} \subseteq \mathcal{B}_e$ be homogeneous nc varieties. Then TFAE:

- $H_1(\mathcal{V})$ and $H_1(\mathcal{W})$ are completely isometrically isomorphic,
- $H_1(\mathcal{V})$ and $H_1(\mathcal{W})$ are isometrically isomorphic,
- \mathcal{V} and \mathcal{W} are ball-biholomorphic,
- \mathcal{V} and \mathcal{W} are conformally equivalent,
- there is a unitary transformation U mapping \mathcal{V} onto \mathcal{W}.

Proof ingredients:

- Ball-biholo, conf. equiv. — basic nc function theory and tricks, analysis of fixed points of nc holomorphic maps (refined by Shamovich later).
- Unitary — The Disc Trick.
- Isometric, c.i.s. — homogeneous case allows passage from algebra to Hilbert space on graded components unitarily implemented.
(Completely) isometric isomorphism – homogeneous case

Theorem (Salomon-S-Shamovich ’17)

Let $\mathcal{V} \subseteq \mathcal{B}_d$ and $\mathcal{W} \subseteq \mathcal{B}_e$ be homogeneous nc varieties. Then TFAE:

- $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are completely isometrically isomorphic,
- $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are isometrically isomorphic,
- \mathcal{V} and \mathcal{W} are ball-biholomorphic,
- \mathcal{V} and \mathcal{W} are conformally equivalent,
- there is a unitary transformation U mapping \mathcal{V} onto \mathcal{W}.

Proof ingredients:

- Ball-biholo, conf. equiv. — basic nc function theory and tricks, analysis of fixed points of nc holomorphic maps (refined by Shamovich later).
- Unitary — The Disc Trick.
- Isometric, c.i.s. — homogeneous case allows passage from algebra to Hilbert space on graded components unitarily implemented.
(Completely) isometric isomorphism – homogeneous case

Theorem (Salomon-S-Shamovich ’17)

Let $\mathcal{V} \subseteq \mathcal{B}_d$ and $\mathcal{W} \subseteq \mathcal{B}_e$ be homogeneous nc varieties. Then TFAE:

1. $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are completely isometrically isomorphic,
2. $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are isometrically isomorphic,
3. \mathcal{V} and \mathcal{W} are ball-biholomorphic,
4. \mathcal{V} and \mathcal{W} are conformally equivalent,
5. there is a unitary transformation U mapping \mathcal{V} onto \mathcal{W}.

Proof ingredients:

• Ball-biholo \iff conf. equiv. — basic nc function theory and tricks, analysis of fixed points of nc holomorphic maps (refined by Shamovich later).
(Completely) isometric isomorphism – homogeneous case

Theorem (Salomon-S-Shamovich ’17)

Let $\mathcal{V} \subseteq \mathcal{B}_d$ and $\mathcal{W} \subseteq \mathcal{B}_e$ be homogeneous nc varieties. Then TFAE:

1. $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are completely isometrically isomorphic,
2. $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are isometrically isomorphic,
3. \mathcal{V} and \mathcal{W} are ball-biholomorphic,
4. \mathcal{V} and \mathcal{W} are conformally equivalent,
5. there is a unitary transformation U mapping \mathcal{V} onto \mathcal{W}.

Proof ingredients:

- Ball-biholo \Leftrightarrow conf. equiv. — basic nc function theory and tricks, analysis of fixed points of nc holomorphic maps (refined by Shamovich later).
- \exists unitary — The Disc Trick.
(Completely) isometric isomorphism – homogeneous case

Theorem (Salomon-S-Shamovich ’17)

Let $\mathcal{V} \subseteq \mathcal{B}_d$ and $\mathcal{W} \subseteq \mathcal{B}_e$ be homogeneous nc varieties. Then TFAE:

1. $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are completely isometrically isomorphic,
2. $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are isometrically isomorphic,
3. \mathcal{V} and \mathcal{W} are ball-biholomorphic,
4. \mathcal{V} and \mathcal{W} are conformally equivalent,
5. there is a unitary transformation U mapping \mathcal{V} onto \mathcal{W}.

Proof ingredients:

- Ball-biholo \Leftrightarrow conf. equiv. — basic nc function theory and tricks, analysis of fixed points of nc holomorphic maps (refined by Shamovich later).
- \exists unitary — The Disc Trick.
- isometric \Leftrightarrow c.i.s. — homogeneous case allows passage from algebra to Hilbert space on graded components \Rightarrow unitarily implemented.
In search of a coarser classification of $H^\infty(\mathcal{V})$
In search of a coarser classification of $H^\infty(\mathcal{M})$

- Can we classify up to c.b./bounded/weak-* cont./algebraic isomorphism?
In search of a coarser classification of $H^\infty(\mathcal{M})$

- Can we classify up to c.b./bounded/weak-*$\text{-cont.}/algebraic isomorphism?
- We need new types of variety equivalences in our story...
The similarity envelope of a nc set Ω is

$$\tilde{\Omega} := \bigcup_{n=1}^{\infty} \left\{ S^{-1}XS : X \in \Omega(n), \ S \in \text{GL}_n(\mathbb{C}) \right\}.$$

$\tilde{\Omega}$ is a nc set.
The similarity envelope of a nc set Ω is

$$\tilde{\Omega} := \bigcup_{n=1}^{\infty} \left\{ S^{-1} XS : X \in \Omega(n), \ S \in \text{GL}_n(\mathbb{C}) \right\}.$$

$\tilde{\Omega}$ is a nc set.

Lemma (Biswas, Kaliuzhnyi-Verbovetskyi & Vinnikov)

*Every nc function on an nc set Ω extends uniquely to $\tilde{\Omega}$.***
Similarity envelopes

The similarity envelope of a nc set Ω is

$$\tilde{\Omega} := \bigcup_{n=1}^{\infty} \{ S^{-1}XS : X \in \Omega(n), ~ S \in \text{GL}_n(\mathbb{C}) \}.$$

$\tilde{\Omega}$ is a nc set.

Lemma (Biswas, Kaliuzhnyi-Verbovetskyi & Vinnikov)

Every nc function on an nc set Ω extends uniquely to $\tilde{\Omega}$.

Proof: For $f : \Omega \to \mathbb{M}_1$, $X \in \Omega(n)$, and $S \in \text{GL}_n$, define

$$\tilde{f}(S^{-1}XS) := S^{-1}f(X)S$$

□
Similarity envelopes

The **similarity envelope** of a nc set Ω is

$$\tilde{\Omega} := \bigcup_{n=1}^{\infty} \{ S^{-1}XS : X \in \Omega(n), \ S \in \text{GL}_n(\mathbb{C}) \}.$$

$\tilde{\Omega}$ is a nc set.

Lemma (Biswa, Kaliuzhnyi-Verbovetskyi & Vinnikov)

*Every nc function on an nc set Ω extends uniquely to $\tilde{\Omega}$.***

Proof: For $f : \Omega \to \mathbb{M}_1$, $X \in \Omega(n)$, and $S \in \text{GL}_n$, define

$$\tilde{f}(S^{-1}XS) := S^{-1}f(X)S$$

Thus, $H^\infty(\mathcal{V})$ is an algebra of (unbounded) nc functions on $\tilde{\Omega}$.

The similarity envelope will be our geometric invariant.
The similarity envelope of a nc set Ω is

$$\tilde{\Omega} := \bigcup_{n=1}^{\infty} \left\{ S^{-1}XS : X \in \Omega(n), \ S \in \text{GL}_n(\mathbb{C}) \right\}.$$

$\tilde{\Omega}$ is a nc set.

Lemma (Biswa, Kaliuzhnyi-Verbovetskyi & Vinnikov)

Every nc function on an nc set Ω extends uniquely to $\tilde{\Omega}$.

Proof: For $f : \Omega \to \mathbb{M}_1$, $X \in \Omega(n)$, and $S \in \text{GL}_n$, define

$$\tilde{f}(S^{-1}XS) := S^{-1}f(X)S$$

Thus, $H^\infty(\mathfrak{H})$ is an algebra of (unbounded) nc functions on $\tilde{\Omega}$.

The similarity envelope will be our geometric invariant.
Example: the similarity envelope of $\mathcal{N} = \mathcal{B}_d$

Recall:
\mathcal{B}_d is the set of all strict contractions. $\tilde{\mathcal{B}}_d$ is the similarity envelope of \mathcal{B}_d. What does $\tilde{\mathcal{B}}_d$ look like?
Example: the similarity envelope of $\mathcal{V} = \mathcal{B}_d$

Recall:
\mathcal{B}_d is the set of all strict contractions. $\tilde{\mathcal{B}}_d$ is the similarity envelope of \mathcal{B}_d.
What does $\tilde{\mathcal{B}}_d$ look like?

Observation (Salomon-S-Shamovich '18)

$\tilde{\mathcal{B}}_d$ is the set of all pure d-tuples.
It is also the set of all d-tuples with joint spectral radius < 1.
Example: the similarity envelope of $\mathcal{V} = \mathcal{B}_d$

Recall:
\mathcal{B}_d is the set of all strict contractions. $\widetilde{\mathcal{B}}_d$ is the similarity envelope of \mathcal{B}_d.
What does $\widetilde{\mathcal{B}}_d$ look like?

Observation (Salomon-S-Shamovich ’18)

$\widetilde{\mathcal{B}}_d$ is the set of all pure d-tuples.
It is also the set of all d-tuples with joint spectral radius < 1.

For $X \in \mathbb{M}^d(n)$ set

$$\Psi_X(T) = \sum_{i=1}^{d} X_j T X_j^*$$
Example: the similarity envelope of $\mathcal{V} = \mathcal{B}_d$

Recall:
\mathcal{B}_d is the set of all strict contractions. $\tilde{\mathcal{B}}_d$ is the similarity envelope of \mathcal{B}_d.
What does $\tilde{\mathcal{B}}_d$ look like?

Observation (Salomon-S-Shamovich ’18)
$\tilde{\mathcal{B}}_d$ is the set of all pure d-tuples.
It is also the set of all d-tuples with joint spectral radius < 1.

For $X \in \mathbb{M}^d(n)$ set

$$\Psi_X(T) = \sum_{i=1}^{d} X_j T X_j^*$$

X is called pure if $\lim \Psi^k_X(I_n) = 0$.
Example: the similarity envelope of $\mathcal{V} = \mathcal{V}_d$

Recall:
\mathcal{V}_d is the set of all strict contractions. $\tilde{\mathcal{V}}_d$ is the similarity envelope of \mathcal{V}_d.
What does $\tilde{\mathcal{V}}_d$ look like?

Observation (Salomon-S-Shamovich ’18)

$\tilde{\mathcal{V}}_d$ is the set of all pure d-tuples.
It is also the set of all d-tuples with joint spectral radius < 1.

For $X \in \mathbb{M}^d(n)$ set

$$\Psi_X(T) = \sum_{i=1}^{d} X_j T X_j^*$$

X is called **pure** if $\lim \Psi_X^k(I_n) = 0$.

The **joint spectral radius** is defined by $\rho(X) = \lim \|\Psi_X^k(I_n)\|^{\frac{1}{2k}}$.
Example (cont.): $\text{Aut}(\mathcal{B}_d)$

Theorem (Follows from work of many: Davison-Pitts, Popescu ... explicitly: McCarthy-Timoney, us)

$$\text{Aut}(\mathcal{B}_d) = \text{Aut}(\mathcal{B}_d)$$
Similarity envelopes

Example (cont.): \(\text{Aut}(\mathcal{B}_d) \)

Theorem (Follows from work of many: Davison-Pitts, Popescu . . . explicitly: McCarthy-Timoney, us)

\[
\text{Aut}(\mathcal{B}_d) = \text{Aut}(\mathcal{B}_d)
\]

Clear: \(\text{Aut}(\mathcal{B}_d) \hookrightarrow \text{Aut}(\mathcal{\tilde{B}}_d) \). But is it all?

Example

If \(g \in H^\infty(\mathcal{B}_d) \) is invertible, the nc map

\[
G(X) = g(X)Xg(X)^{-1}
\]

is a nc automorphism of \(\mathcal{\tilde{B}}_d \).
Example (cont.): $\text{Aut}(\tilde{\mathcal{B}}_d)$

Theorem (Follows from work of many: Davison-Pitts, Popescu ... explicitly: McCarthy-Timoney, us)

$\text{Aut}(\mathcal{B}_d) = \text{Aut}(\mathcal{B}_d)$

Clear: $\text{Aut}(\mathcal{B}_d) \hookrightarrow \text{Aut}(\tilde{\mathcal{B}}_d)$. But is it all?

Example

If $g \in H^\infty(\mathcal{B}_d)$ is invertible, the nc map

$$G(X) = g(X)Xg(X)^{-1}$$

is a nc automorphism of $\tilde{\mathcal{B}}_d$. Bonus: $\sup_{X \in \mathcal{B}_d} \|G(X)\| < \infty$.
Example (cont.): $\text{Aut}(\tilde{\mathcal{B}}_d)$

Theorem (Follows from work of many: Davdison-Pitts, Popescu... explicitly: McCarthy-Timoney, us)

$\text{Aut}(\mathcal{B}_d) = \text{Aut}(\mathcal{B}_d)$

Clear: $\text{Aut}(\mathcal{B}_d) \hookrightarrow \text{Aut}(\tilde{\mathcal{B}}_d)$. But is it all?

Example

If $g \in H^\infty(\mathcal{B}_d)$ is invertible, the nc map

$$G(X) = g(X)Xg(X)^{-1}$$

is a nc automorphism of $\tilde{\mathcal{B}}_d$. Bonus: $\sup_{X \in \mathcal{B}_d} \|G(X)\| < \infty$. G implements element of $\text{Aut}(H^\infty(\mathcal{B}_d))$ via conjugation with g:

$$f \mapsto gfg^{-1} = f \circ G$$

* One goal: understand automorphisms of $H^\infty(\mathcal{B}_d)$. Time permitting, we'll discuss.
The role of similarity envelope — finite dim. reps.

Theorem (Salomon-S-Shamovich, '18)

\[\pi : \text{Rep}_b(H^\infty(\mathcal{W})) \to \overline{\mathcal{B}}_d \]
\[\text{Rep}_{w^*}(H^\infty(\mathcal{W})) \cong \overline{\mathcal{Y}} \]
The role of similarity envelope — finite dim. reps.

Theorem (Salomon-S-Shamovich, ’18)

\[\pi : \text{Rep}_b(H^\infty(\mathcal{V})) \rightarrow \tilde{\mathcal{B}}_d \]

\[\text{Rep}_{w^*}(H^\infty(\mathcal{V})) \cong \tilde{\mathcal{V}} \]

Proof: If \(\Phi : H^\infty(\mathcal{V}) \rightarrow M_n \) is bounded
The role of similarity envelope — finite dim. reps.

Theorem (Salomon-S-Shamovich, ’18)

\[
\pi : \text{Rep}_b(H^\infty(\mathcal{Y})) \to \widetilde{\mathcal{B}}_d
\]

\[
\text{Rep}_{w^*}(H^\infty(\mathcal{Y})) \cong \widetilde{\mathcal{Y}}
\]

Proof: If \(\Phi : H^\infty(\mathcal{Y}) \to M_n \) is bounded \(\xrightarrow{\text{Smith}} \) \(\Phi \) is cb
The role of similarity envelope — finite dim. reps.

Theorem (Salomon-S-Shamovich, ’18)

\[\pi : \text{Rep}_b(H^{\infty}(\mathcal{V})) \to \tilde{\mathcal{B}}_d \]

\[\text{Rep}_{w^*}(H^{\infty}(\mathcal{V})) \cong \tilde{\mathcal{V}} \]

Proof: If \(\Phi : H^{\infty}(\mathcal{V}) \to M_n \) is bounded \(\xrightarrow{\text{Smith}} \) \(\Phi \) is cb \(\xrightarrow{\text{Paulsen}} \) \(\Phi \) is similar to cc representation \(\Phi(\cdot) = S^{-1}\Psi(\cdot)S \) with \(\Psi \in \text{Rep}_{cc}(H^{\infty}(\mathcal{V})) \).
The role of similarity envelope — finite dim. reps.

Theorem (Salomon-S-Shamovich, '18)

$$\pi : \text{Rep}_b(H^\infty(\mathcal{V})) \rightarrow \tilde{\mathcal{B}}_d$$

$$\text{Rep}_{w*}(H^\infty(\mathcal{V})) \cong \tilde{\mathcal{V}}$$

Proof: If $$\Phi : H^\infty(\mathcal{V}) \rightarrow M_n$$ is bounded \(\xrightarrow{\text{Smith}}\) $$\Phi$$ is cb \(\xrightarrow{\text{Paulsen}}\) $$\Phi$$ is similar to cc representation $$\Phi(\cdot) = S^{-1} \Psi(\cdot) S$$ with $$\Psi \in \text{Rep}_{cc}(H^\infty(\mathcal{V}))$$. We understand cc reps, so

$$\pi : \Phi \mapsto \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) = S^{-1} \Psi(z) S$$

maps $$\text{Rep}_b(H^\infty(\mathcal{V}))$$ onto similarity envelope of $$\pi(\text{Rep}_{cc}(H^\infty(\mathcal{V})))$$.
The role of similarity envelope — finite dim. reps.

Theorem (Salomon-S-Shamovich, ’18)

\[\pi : \text{Rep}_b(H^\infty(\mathcal{H})) \to \tilde{\mathcal{B}}_d \]

\[\text{Rep}_{w^*}(H^\infty(\mathcal{H})) \cong \tilde{\mathcal{H}} \]

Proof: If \(\Phi : H^\infty(\mathcal{H}) \to M_n \) is bounded \(\xrightarrow{\text{Smith}} \) \(\Phi \) is cb \(\xrightarrow{\text{Paulsen}} \) \(\Phi \) is similar to cc representation \(\Phi(\cdot) = S^{-1}\Psi(\cdot)S \) with \(\Psi \in \text{Rep}_{cc}(H^\infty(\mathcal{H})) \). We understand cc reps, so

\[\pi : \Phi \mapsto \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) = S^{-1}\Psi(z)S \]

maps \(\text{Rep}_b(H^\infty(\mathcal{H})) \) onto similarity envelope of \(\pi(\text{Rep}_{cc}(H^\infty(\mathcal{H}))) \). \(\Phi \) is weak-* continuous \(\Leftrightarrow \Psi \) is, so second assertion follows. \(\square \)
The role of similarity envelope — finite dim. reps.

Theorem (Salomon-S-Shamovich, '18)

\[\pi : \text{Rep}_b(H^\infty(\mathcal{H})) \to \tilde{\mathcal{B}}_d \]

\[\text{Rep}_{w^*}(H^\infty(\mathcal{H})) \cong \tilde{\mathcal{H}} \]

Proof: If \(\Phi : H^\infty(\mathcal{H}) \to M_n \) is bounded \(\xRightarrow{\text{Smith}} \) \(\Phi \) is cb \(\xRightarrow{\text{Paulsen}} \) \(\Phi \) is similar to cc representation \(\Phi(\cdot) = S^{-1}\Psi(\cdot)S \) with \(\Psi \in \text{Rep}_{cc}(H^\infty(\mathcal{H})) \). We understand cc reps, so

\[\pi : \Phi \mapsto \pi(\Phi) = (\Phi(z_1), \ldots, \Phi(z_d)) = S^{-1}\Psi(z)S \]

maps \(\text{Rep}_b(H^\infty(\mathcal{H})) \) onto similarity envelope of \(\pi(\text{Rep}_{cc}(H^\infty(\mathcal{H}))) \). \(\Phi \) is weak-* continuous \(\Leftrightarrow \) \(\Psi \) is, so second assertion follows. \(\square \)

Evaluation representations

For \(X \in \tilde{\mathcal{H}} \) define \(\Phi_X \in \text{Rep}_{w^*}(H^\infty(\mathcal{H})) \) by

\[\Phi_X(f) = \tilde{f}(X). \]
General strategy

Suppose $\alpha : H^\infty(\mathcal{V}) \to H^\infty(\mathcal{W})$ is a bounded isomorphism.
Suppose \(\alpha : H^\infty(\mathcal{H}) \to H^\infty(\mathcal{M}) \) is a bounded isomorphism.

\[\implies \text{we have the adjoint map } \alpha^* : H^\infty(\mathcal{M}) \to H^\infty(\mathcal{H}). \]
General strategy

Suppose \(\alpha : H^\infty(\mathcal{M}) \to H^\infty(\mathcal{W}) \) is a bounded isomorphism. We have the adjoint map \(\alpha^* : H^\infty(\mathcal{W}) \to H^\infty(\mathcal{M}) \).

Define \(G : \mathcal{W} \to \mathcal{B}_d \) by

\[
G(W) = \pi \alpha^*(\Phi_W)
\]
General strategy

Suppose $\alpha : H^\infty(\mathfrak{H}) \to H^\infty(\mathfrak{W})$ is a bounded isomorphism.
\implies we have the adjoint map $\alpha^* : H^\infty(\mathfrak{W}) \to H^\infty(\mathfrak{H})$.
\implies define $G : \mathfrak{W} \to \mathfrak{B}_d$ by

$$G(W) = \pi \alpha^*(\Phi_W)$$

Over $X \in \mathfrak{H}$ lies a unique rep: the weak-* cont. evaluation representation

$$\Phi_X : f \mapsto \tilde{f}(X)$$
General strategy

Suppose \(\alpha : H^\infty(\mathfrak{H}) \to H^\infty(\mathfrak{M}) \) is a bounded isomorphism.

\[\implies \text{we have the adjoint map } \alpha^* : H^\infty(\mathfrak{M}) \to H^\infty(\mathfrak{H}). \]

\[\implies \text{define } G : \mathfrak{M} \to \mathfrak{B}_d \text{ by } \]

\[G(W) = \pi \alpha^*(\Phi_W) \]

Over \(X \in \tilde{\mathfrak{H}} \) lies a unique rep: the weak-* cont. evaluation representation

\[\Phi_X : f \mapsto \tilde{f}(X) \]

Our goal:

To show that \(G(W) \in \tilde{\mathfrak{H}} \) for every \(W \in \mathfrak{M} \)

\[\ldots \text{because then it follows that } \alpha^*(\Phi_W) = \Phi_{G(W)} \]
General strategy

Suppose \(\alpha : H^\infty(\mathcal{W}) \to H^\infty(\mathcal{W}) \) is a bounded isomorphism.

\(\implies \) we have the adjoint map \(\alpha^* : H^\infty(\mathcal{W}) \to H^\infty(\mathcal{W}) \).

\(\implies \) define \(G : \mathcal{W} \to \mathcal{B}_d \) by

\[
G(W) = \pi \alpha^*(\Phi_W)
\]

Over \(X \in \mathcal{W} \) lies a unique rep: the weak-* cont. evaluation representation

\(\Phi_X : f \mapsto \tilde{f}(X) \)

Our goal:

To show that \(G(W) \in \mathcal{W} \) for every \(W \in \mathcal{W} \)

...because then it follows that \(\alpha^*(\Phi_W) = \Phi_{G(W)} \), hence (the usual ...)

\[
\alpha(f)(W) = \alpha^*(\Phi_W)(f) = \Phi_{G(W)}(f) = \tilde{f} \circ G(W)
\]
General strategy

Suppose $\alpha : H^\infty(\mathcal{V}) \to H^\infty(\mathcal{W})$ is a bounded isomorphism.

\implies we have the adjoint map $\alpha^* : H^\infty(\mathcal{W}) \to H^\infty(\mathcal{V})$.

\implies define $G : \mathcal{W} \to \mathcal{B}_d$ by

$$G(W) = \pi \alpha^*(\Phi_W)$$

Over $X \in \mathcal{V}$ lies a unique rep: the weak-$*$ cont. evaluation representation

$$\Phi_X : f \mapsto \tilde{f}(X)$$

Our goal:

To show that $G(W) \in \mathcal{V}$ for every $W \in \mathcal{W}$

... because then it follows that $\alpha^*(\Phi_W) = \Phi_{G(W)}$, hence (the usual ...)

$$\alpha(f)(W) = \alpha^*(\Phi_W)(f) = \Phi_{G(W)}(f) = \tilde{f} \circ G(W)$$

Note: working backwards, get boundedness condition on G:

$$\|\Phi_{G(W)}(f)\| = \|\tilde{f} \circ G(W)\| = \|\alpha(f)(W)\| \leq \|\alpha(f)\| \leq \|\alpha\|f\|$$
Easy result: weak-\(\ast\) continuous isomorphisms

\[\tilde{\mathcal{V}} := \bigsqcup_{n=1}^{\infty} \{ S^{-1}XS : X \in \mathcal{V}(n), \ S \in \text{GL}_n(\mathbb{C}) \} . \]
Easy result: weak-\ast continuous isomorphisms

\[\tilde{\mathcal{V}} := \bigsqcup_{n=1}^{\infty} \{ S^{-1}XS : X \in \mathfrak{V}(n), \ S \in \text{GL}_n(\mathbb{C}) \} . \]

\[\tilde{\mathcal{V}} \leftrightarrow \text{Rep}_{w^*}(H^\infty(\mathfrak{V})) \ \text{by} \ \ X \leftrightarrow \Phi_X \]
Easy result: weak-\(\ast\) continuous isomorphisms

\[
\mathcal{V} := \bigsqcup_{n=1}^{\infty} \{ S^{-1} X S : X \in \mathcal{V}(n), \ S \in \text{GL}_n(\mathbb{C}) \}.
\]

\[
\mathcal{V} \longmapsto \text{Rep}_{w^\ast}(H^\infty(\mathcal{V})) \quad \text{by} \quad X \longmapsto \Phi_X : f \mapsto \hat{f}(X).
\]
Bounded isomorphisms

Easy result: weak-* continuous isomorphisms

\[\tilde{\mathcal{V}} := \bigsqcup_{n=1}^{\infty} \{ S^{-1} X S : X \in \mathfrak{V}(n), \ S \in \text{GL}_n(\mathbb{C}) \} . \]

\[\tilde{\mathcal{V}} \longleftrightarrow \text{Rep}_{w^*}(H^\infty(\mathcal{V})) \ by \ X \longleftrightarrow \Phi_X : f \mapsto \tilde{f}(X). \]

Theorem (Salomon-S-Shamovich '18)

Let \(\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d \) be nc varieties. Then \(H^\infty(\mathcal{V}) \) and \(H^\infty(\mathcal{W}) \) are weak-* isomorphic if and only if \(\tilde{\mathcal{V}} \) and \(\tilde{\mathcal{W}} \) are biholomorphic via a nc map \(G : \tilde{\mathcal{W}} \rightarrow \tilde{\mathcal{V}} \) satisfying

\[\sup_{W \in \mathcal{W}} \| \Phi_{G(W)} \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}(V)} \| < \infty \]

where \(\Phi_X = \text{evaluation at } X \).
Bounded isomorphisms

Easy result: weak-\,* continuous isomorphisms

$$\tilde{\mathcal{V}} := \bigsqcup_{n=1}^{\infty} \{ S^{-1} X S : X \in \mathfrak{V}(n), \ S \in \text{GL}_n(\mathbb{C}) \}.$$

$$\tilde{\mathcal{V}} \longleftrightarrow \text{Rep}_{w^\ast}(H^\infty(\mathcal{V})) \text{ by } X \longleftrightarrow \Phi_X : f \mapsto \tilde{f}(X).$$

Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are weak-\,* isomorphic if and only if $\tilde{\mathcal{V}}$ and $\tilde{\mathcal{W}}$ are biholomorphic via a nc map $G : \tilde{\mathcal{W}} \to \tilde{\mathcal{V}}$ satisfying

$$\sup_{W \in \mathcal{W}} \| \Phi_{G(W)} \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}(V)} \| < \infty$$

where $\Phi_X = \text{evaluation at } X$. In this case, the isomorphism of $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ is given by

$$f \mapsto \tilde{f} \circ G$$
Bounded isomorphisms

Proving iso. ⇒ biholo. in the easy result

Theorem (Salomon-S-Shamovich ’18)

Let $V, W \subseteq \mathcal{B}_d$ be nc varieties. Then $H^\infty(V)$ and $H^\infty(W)$ are weak-\ast isomorphic if and only if \tilde{V} and \tilde{W} are biholomorphic via a nc map $G : \tilde{W} \to \tilde{V}$ satisfying

$$\sup_{W \in \tilde{W}} \| \Phi_G(W) \| < \infty \quad \text{and} \quad \sup_{V \in \tilde{V}} \| \Phi_{G^{-1}}(V) \| < \infty$$

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Proof (iso. ⇒ biholo.):

Recall that we defined $G : f : W \to f : \mathcal{B}_d$ by $G(W) = \pi_{\Phi}^\ast(W)$. We need to prove that G maps W into V, but this is clear if π is weak-\ast continuous (given that $\pi : W \to \overline{\pi W} = \text{Rep}_w(\overline{H^1(V)})$).
Theorem (Salomon-S-Shamovich ’18)

Let $V, \mathcal{M} \subseteq \mathcal{B}_d$ be nc varieties. Then $H_\infty(\mathcal{V})$ and $H_\infty(\mathcal{M})$ are weak-\ast isomorphic if and only if \mathcal{V} and \mathcal{M} are biholomorphic via a nc map $G: \mathcal{M} \rightarrow \mathcal{V}$ satisfying

$$\sup_{W \in \mathcal{M}} \|\Phi_G(W)\| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \|\Phi_{G^{-1}}(V)\| < \infty$$

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Proof (iso. \Rightarrow biholo.): Recall that we defined $G: \mathcal{M} \rightarrow \mathcal{B}_d$ by

$$G(W) = \pi \alpha^*(\Phi_W)$$
Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are weak-* isomorphic if and only if \mathcal{V} and \mathcal{W} are biholomorphic via a nc map $G : \mathcal{W} \to \mathcal{V}$ satisfying

$$
\sup_{W \in \mathcal{W}} \| \Phi_G(W) \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}}(V) \| < \infty
$$

The isomorphism of is given by $f \mapsto f \circ G$.

Proof (iso. \Rightarrow biholo.): Recall that we defined $G : \mathcal{W} \to \mathcal{B}_d$ by

$$
G(W) = \pi \alpha^*(\Phi_W)
$$

We need to prove that G maps \mathcal{W} into \mathcal{V}, but this is clear if α is weak-* continuous (given that $\mathcal{V} \cong \text{Rep}_{w^*}(H^\infty(\mathcal{V}))$).
Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are weak-\$
\begin{align*}
\text{isomorphic} \text{ if and only if } \tilde{\mathcal{V}} \text{ and } \tilde{\mathcal{W}} \text{ are biholomorphic via a nc map } \\
G : \tilde{\mathcal{W}} \to \tilde{\mathcal{V}} \text{ satisfying }
\end{align*}

\[\sup_{W \in \mathcal{W}} \| \Phi_G(W) \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_G^{-1}(V) \| < \infty \]

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Proof (bounded biholo. \Rightarrow iso.):
Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are weak-*$ isomorphic if and only if $\tilde{\mathcal{V}}$ and $\tilde{\mathcal{W}}$ are biholomorphic via a nc map $G : \tilde{\mathcal{W}} \to \tilde{\mathcal{V}}$ satisfying

$$\sup_{W \in \mathcal{W}} \| \Phi_G(W) \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}}(V) \| < \infty$$

The isomorphism is given by $f \mapsto \tilde{f} \circ G$.

Proof (bounded biholo. \Rightarrow iso.): For $f \in H^\infty(\mathcal{V})$,

$$\sup_{W \in \mathcal{W}} \| \tilde{f}(G(W)) \| \leq \sup_{W \in \mathcal{W}} \| \Phi_G(W) \| \| f \|,$$

so $\tilde{f} \circ G \in H^\infty(\mathcal{W})$.
Bounded isomorphisms

Proving the other easy direction of the easy result

Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{V}_d$ be nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are weak-\star isomorphic if and only if $\tilde{\mathcal{V}}$ and $\tilde{\mathcal{W}}$ are biholomorphic via a nc map $G : \tilde{\mathcal{W}} \rightarrow \tilde{\mathcal{V}}$ satisfying

$$
\sup_{W \in \mathcal{W}} \| \Phi_G(W) \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}}(V) \| < \infty
$$

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Proof (bounded biholo. \Rightarrow iso.): For $f \in H^\infty(\mathcal{V})$,

$$
\sup_{W \in \mathcal{W}} \| \tilde{f}(G(W)) \| \leq \sup_{W \in \mathcal{W}} \| \Phi_G(W) \| \| f \|,
$$

so $\tilde{f} \circ G \in H^\infty(\mathcal{W})$.

$\alpha : f \mapsto \tilde{f} \circ G$ well defined and bounded \Rightarrow homomorphism.
Removing the weak-* assumption

Goal: show $G = \pi \circ \alpha^*$ maps \mathcal{W} to $\tilde{\mathcal{V}}$.
Goal: show $G = \pi \circ \alpha^*$ maps \mathcal{W} to \mathcal{Y}, i.e. $G(W) \in \mathcal{Y}$ for $W \in \mathcal{W}$.
Goal: show $G = \pi \circ \alpha^*$ maps \mathcal{W} to $\tilde{\mathcal{V}}$, i.e. $G(W) \in \tilde{\mathcal{V}}$ for $W \in \mathcal{W}$.

Since $G(W) \in \tilde{\mathcal{V}}$, we have $G(W) \in \tilde{\mathcal{V}} \iff \rho(G(W)) < 1$.
Removing the weak-\(\ast\) assumption

Goal: show \(G = \pi \circ \alpha^*\) maps \(\mathcal{W}\) to \(\tilde{\mathcal{Y}}\), i.e. \(G(W) \in \tilde{\mathcal{Y}}\) for \(W \in \mathcal{W}\).

Since \(G(W) \in \tilde{\mathcal{Y}}\), we have \(G(W) \in \tilde{\mathcal{Y}} \iff \rho(G(W)) < 1\).

We believe this is true in general, but could prove it (for now) only for homogeneous varieties.
Goal: show $G = \pi \circ \alpha^*$ maps \mathcal{W} to $\tilde{\mathcal{V}}$, i.e. $G(W) \in \tilde{\mathcal{V}}$ for $W \in \mathcal{W}$. Since $G(W) \in \tilde{\mathcal{V}}$, we have $G(W) \in \tilde{\mathcal{V}} \iff \rho(G(W)) < 1$.

We believe this is true in general, but could prove it (for now) only for homogeneous varieties.

Theorem (Salomon-S-Shamovich '18)

Let \mathcal{V}, $\mathcal{W} \subseteq \mathcal{B}_d$ be homogeneous nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are boundedly isomorphic if and only if $\tilde{\mathcal{V}}$ and $\tilde{\mathcal{W}}$ are biholomorphic via a nc map $G : \tilde{\mathcal{W}} \rightarrow \tilde{\mathcal{V}}$ satisfying

\[
\sup_{W \in \mathcal{W}} \| \Phi G(W) \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi G^{-1}(V) \| < \infty
\]

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Theorem (Salomon-S-Shamovich '18)
Removing the weak-* assumption

Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{V}_d$ be homogeneous nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are **boundedly** isomorphic if and only if $\tilde{\mathcal{V}}$ and $\tilde{\mathcal{W}}$ are biholomorphic via a nc map $G : \tilde{\mathcal{W}} \to \tilde{\mathcal{V}}$ satisfying

$$
\sup_{W \in \mathcal{W}} \| \Phi_G(W) \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}}(V) \| < \infty
$$

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Proof idea: $G = \pi \circ \alpha^*$. Need to show $\rho(G(W)) < 1$ for $W \in \mathcal{W}$.
Bounded isomorphisms

Removing the weak-* assumption

Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be homogeneous nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are boundedly isomorphic if and only if $\widetilde{\mathcal{V}}$ and $\widetilde{\mathcal{W}}$ are biholomorphic via a nc map $G : \widetilde{\mathcal{W}} \to \widetilde{\mathcal{V}}$ satisfying

$$\sup_{W \in \mathcal{W}} \| \Phi_G(W) \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}}(V) \| < \infty$$

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Proof idea: $G = \pi \circ \alpha^*$. Need to show $\rho(G(W)) < 1$ for $W \in \mathcal{W}$.

Define $u : \mathbb{D} \to [0, \infty)$ by $u(z) = \rho(G(zW/\|W\|))$.

32 / 46
Removing the weak-* assumption

Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be homogeneous nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are **boundedly isomorphic** if and only if \mathcal{V} and \mathcal{W} are biholomorphic via a nc map $G : \mathcal{W} \to \mathcal{V}$ satisfying

$$ \sup_{W \in \mathcal{W}} \| \Phi_{G(W)} \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}(V)} \| < \infty $$

The isomorphism of is given by $f \mapsto \widetilde{f} \circ G$.

Proof idea: $G = \pi \circ \alpha^*$. Need to show $\rho(G(W)) < 1$ for $W \in \mathcal{W}$. Define $u : \mathbb{D} \to [0, \infty)$ by $u(z) = \rho(G(zW/\|W\|))$. We prove (following Vesentini) that this function u is subharmonic, thus satisfies a maximum principle.
Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be homogeneous nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are boundedly isomorphic if and only if $\overline{\mathcal{V}}$ and $\overline{\mathcal{W}}$ are biholomorphic via a nc map $G : \mathcal{W} \to \mathcal{V}$ satisfying

$$\sup_{W \in \mathcal{W}} \| \Phi_{G(W)} \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}(V)} \| < \infty$$

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Proof idea: $G = \pi \circ \alpha^*$. Need to show $\rho(G(W)) < 1$ for $W \in \mathcal{W}$. Define $u : \mathbb{D} \to [0, \infty)$ by $u(z) = \rho(G(zW/\|W\|))$. We prove (following Vesentini) that this function u is subharmonic, thus satisfies a maximum principle. If $u(\|W\|) = \rho(G(W)) = 1$, then $u \equiv 1$.
Removing the weak-* assumption

Theorem (Salomon-S-Shamovich ’18)

Let $V, W \subseteq \mathcal{B}_d$ be homogeneous nc varieties. Then $H^\infty(V)$ and $H^\infty(W)$ are **boundedly** isomorphic if and only if \tilde{V} and \tilde{W} are biholomorphic via a nc map $G : \tilde{W} \to \tilde{V}$ satisfying

$$\sup_{W \in \mathcal{W}} \| \Phi_{G(W)} \| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \| \Phi_{G^{-1}(V)} \| < \infty$$

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Proof idea: $G = \pi \circ \alpha^*$. Need to show $\rho(G(W)) < 1$ for $W \in \mathcal{W}$. Define $u : \mathbb{D} \to [0, \infty)$ by $u(z) = \rho(G(zW/\|W\|))$. We prove (following Vesentini) that this function u is subharmonic, thus satisfies a maximum principle. If $u(\|W\|) = \rho(G(W)) = 1$, then $u \equiv 1$. Thus $u(0) = \rho(G(0)) = 1$,
Removing the weak-* assumption

Theorem (Salomon-S-Shamovich ’18)

Let $\mathcal{V}, \mathcal{W} \subseteq \mathcal{B}_d$ be homogeneous nc varieties. Then $H^\infty(\mathcal{V})$ and $H^\infty(\mathcal{W})$ are **boundedly isomorphic** if and only if $\tilde{\mathcal{V}}$ and $\tilde{\mathcal{W}}$ are biholomorphic via a nc map $G : \tilde{\mathcal{W}} \to \tilde{\mathcal{V}}$ satisfying

$$\sup_{W \in \mathcal{W}} \|\Phi_{G(W)}\| < \infty \quad \text{and} \quad \sup_{V \in \mathcal{V}} \|\Phi_{G^{-1}(V)}\| < \infty$$

The isomorphism of is given by $f \mapsto \tilde{f} \circ G$.

Proof idea: $G = \pi \circ \alpha^*$. Need to show $\rho(G(W)) < 1$ for $W \in \mathcal{W}$. Define $u : \mathbb{D} \to [0, \infty)$ by $u(z) = \rho(G(zW/\|W\|))$. We prove (following Vesentini) that this function u is subharmonic, thus satisfies a maximum principle. If $u(\|W\|) = \rho(G(W)) = 1$, then $u \equiv 1$. Thus $u(0) = \rho(G(0)) = 1$, and all of \mathcal{W} is mapped to the boundary, leading to a contradiction.
We define a pseudometric on \mathcal{B}_d by

$$\delta(X, Y) := \sup_{f \in (H^\infty(\mathcal{B}_d))_1} \|f(X^n) - f(Y^m)\|$$

for $X \in \mathcal{B}_d(m)$ and $Y \in \mathcal{B}_d(n)$.
We define a **pseudometric** on \mathcal{B}_d by

$$\delta(X, Y) := \sup_{f \in (H^\infty(\mathcal{B}_d))_1} \| f(X^{(n)}) - f(Y^{(m)}) \|$$

for $X \in \mathcal{B}_d(m)$ and $Y \in \mathcal{B}_d(n)$.

A new type of variety equivalence:
We define a pseudometric on \mathcal{B}_d by

$$\delta(X, Y) := \sup_{f \in (H^\infty(\mathcal{B}_d))_1} \| f(X^{(n)}) - f(Y^{(m)}) \|$$

for $X \in \mathcal{B}_d(m)$ and $Y \in \mathcal{B}_d(n)$.

A new type of variety equivalence:

We say that \mathcal{V} & \mathcal{W} are bi-Lipschitz equivalent if their similarity envelopes \tilde{V} and \tilde{W} are biholomorphic via a bi-Lipschitz map.
We define a **pseudometric** on \mathcal{B}_d by

$$\delta_{cb}(X, Y) := \sup_k \sup_{f \in (M_k(H^\infty(\mathcal{B}_d)))_1} \| f(X^{(n)}) - f(Y^{(m)}) \|$$

for $X \in \mathcal{B}_d(m)$ and $Y \in \mathcal{B}_d(n)$.

A new type of variety equivalence:

We say that \mathcal{V} & \mathcal{W} are **completely bi-Lipschitz equivalent** if their similarity envelopes \mathcal{V} and \mathcal{W} are biholomorphic via a bi-Lipschitz map.
Tidying up

For a nc holomorphic map $G : \mathfrak{W} \to \mathfrak{Y}$ TFAE:

(i) $\sup_{W \in \mathfrak{W}} \| \Phi_G(W) \| < \infty$

(ii) G is a Lipschitz map w.r.t. δ
For a nc holomorphic map $G : \tilde{\mathcal{W}} \rightarrow \tilde{\mathcal{V}}$ TFAE:

(i) $\sup_{W \in \tilde{\mathcal{W}}} \| \Phi_G(W) \| < \infty$

(ii) G is a Lipschitz map w.r.t. δ

Also, TFAE:

(i) $\sup_{W \in \tilde{\mathcal{W}}} \| \Phi_G(W) \|_{cb} < \infty$

(ii) G is a Lipschitz map w.r.t. δ_{cb}
Homogeneous varieties – cb and bounded isomorphisms
Homogeneous varieties – cb and bounded isomorphisms

- Conformal equivalence
- Ball-biholomorphism
- Completely bi-Lipschitz equivalence
- Bi-Lipschitz equivalence
- Algebraic isomorphism
- Bounded isomorphism
- Completely bounded isomorphism
- Completely isometric isomorphism
- Isometric isomorphism
- Weak-* continuous isomorphism
Homogeneous varieties – cb and bounded isomorphisms

- Conformal equivalence
- Ball-biholomorphism
- Completely bi-Lipschitz equivalence
- Bi-Lipschitz equivalence
- Completely bounded isomorphism
- Completely isometric isomorphism
- Isometric isomorphism
- Weak-* continuous isomorphism
- Algebraic isomorphism
Homogeneous varieties – cb and bounded isomorphisms
Homogeneous varieties – cb and bounded isomorphisms
Using some complex analysis techniques, we can also show (only for **homogeneous** varieties):

\[bL\text{-equiv} \]
More on homogeneous varieties

Using some complex analysis techniques, we can also show (only for homogeneous varieties):

\[\text{bL-equiv} \rightsquigarrow \text{0-preserving bL-equiv} \]
Using some complex analysis techniques, we can also show (only for homogeneous varieties):

\[
bL\text{-equiv} \leadsto \text{0-preserving } bL\text{-equiv} \leadsto \text{linear } bL\text{-equiv}
\]
Homogeneous varieties

- Conformal equivalence
- Ball-biholomorphism
- Completely bi-Lipschitz equivalence
- Bi-Lipschitz equivalence
- Completely bi-Lipschitz linear equivalence
- Completely bounded isomorphism
- Bounded isomorphism
- Algebraic isomorphism
- Weak-* continuous isomorphism
- Completely isometric isomorphism
Homogeneous varieties

- conformal equivalence
- ball-biholomorphism
- completely bi-Lipschitz equivalence
- bi-Lipschitz equivalence
- bi-Lipschitz linear equivalence
- completely bounded isomorphism
- bounded isomorphism
- weak-* continuous isomorphism
- algebraic isomorphism
- completely isometric isomorphism
- isometric isomorphism
Theorem (S–Shalit–Shamovich, 2018)

Let $\mathcal{V} \subseteq \mathcal{B}_d$ and $\mathcal{W} \subseteq \mathcal{B}_d$ be homogeneous nc varieties. TFAE:

\[
\begin{align*}
H^\infty(\mathcal{V}) & \cong_{cb} H^\infty(\mathcal{W}), \\
H^\infty(\mathcal{V}) & \cong_{b} H^\infty(\mathcal{W}), \\
H^\infty(\mathcal{V}) & \cong_{w^*} H^\infty(\mathcal{W}), \\
\mathcal{V} & \sim_{cbL} \mathcal{W}, \\
\mathcal{V} & \sim_{bL} \mathcal{W},
\end{align*}
\]

∃ completely bi-Lipschitz $A \in \text{GL}_d(\mathbb{C})$ s.t. $A\mathcal{W} = \mathcal{V}$

∃ bi-Lipschitz $A \in \text{GL}_d(\mathbb{C})$ s.t. $A\mathcal{W} = \mathcal{V}$
Bounded isomorphisms

Classification in the case of homogeneous varieties

Theorem (S–Shalit–Shamovich, 2018)

Let $\mathcal{V} \subseteq \mathcal{B}_d$ and $\mathcal{W} \subseteq \mathcal{B}_d$ be homogeneous nc varieties. TFAE:

- $H^\infty(\mathcal{V}) \cong_{cb} H^\infty(\mathcal{W})$,
- $H^\infty(\mathcal{V}) \cong_b H^\infty(\mathcal{W})$,
- $H^\infty(\mathcal{V}) \cong_{w^*} H^\infty(\mathcal{W})$,
- $\tilde{\mathcal{V}} \sim_{cbL} \tilde{\mathcal{W}}$,
- $\tilde{\mathcal{V}} \sim_{bL} \tilde{\mathcal{W}}$,

\exists completely bi-Lipschitz $A \in \text{GL}_d(\mathbb{C})$ s.t. $A\tilde{\mathcal{M}} = \tilde{\mathcal{V}}$

\exists bi-Lipschitz $A \in \text{GL}_d(\mathbb{C})$ s.t. $A\tilde{\mathcal{M}} = \tilde{\mathcal{V}}$

Problem

Do we really need to require A to be bi-Lipschitz? After all, it is just an invertible linear map on \mathbb{C}^d ...
That’s all for now . . .
The next talk is independent of the first two!

References - G. Salomon, OS and E. Shamovich

1. “Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball", to appear in TAMS.

\[\mathcal{V}, \mathcal{W} \subseteq \mathcal{C}M^d = \{ X \in M^d : X_iX_j = X_jX_i \text{ for all } i, j \}. \]
Commutative nc setting

\[\mathcal{V}, \mathcal{W} \subseteq \mathbb{C}\mathbb{M}^d = \{ X \in \mathbb{M}^d : X_i X_j = X_j X_i \text{ for all } i, j \} . \]

If \(V = V(1) \) and \(\mathcal{V} \) is minimal, then \(H^\infty(\mathcal{V}) = \mathcal{M}_V = \text{Mult}(H^2_d) \big|_V \) from first lecture.

Hope this framework may shed light on the isomorphism problem in the fully commutative case.

Watch out. We wish to prove that a linear \(A_2 \in \text{GL}(d) \), with \(A f \mid \mathcal{W} \) is automatically bi-Lipschitz. If we could do that even just for the special case of minimal commutative homogeneous varieties, we would obtain an elegant result of Hartz from the fully commutative case.
Commutative nc setting

\[\mathcal{V}, \mathcal{W} \subseteq \mathbb{C} \mathbb{M}^d = \{ X \in \mathbb{M}^d : X_iX_j = X_jX_i \text{ for all } i, j \}. \]

If \(V = \mathcal{V}(1) \) and \(\mathcal{V} \) is minimal, then \(H^\infty(\mathcal{V}) = \mathcal{M}_V = \text{Mult}(H^2_d)|_V \) from first lecture.

Hope

This framework may shed light on the isomorphism problem in the fully commutative case.
Commutative nc setting

\[\mathcal{V}, \mathcal{W} \subseteq \mathcal{C}M^d = \{ X \in M^d : X_iX_j = X_jX_i \text{ for all } i, j \}. \]

If \(V = \mathcal{V}(1) \) and \(\mathcal{V} \) is minimal, then \(H^\infty(\mathcal{V}) = \mathcal{M}_V = \text{Mult}(H^2_d)|_V \) from first lecture.

Hope

This framework may shed light on the isomorphism problem in the fully commutative case.

Watch out

We wish to prove that a linear \(A \in GL_d, \) with \(A\mathcal{W} = \tilde{\mathcal{V}} \) is automatically bi-Lipschitz.
Commutative nc setting

$$\mathcal{V}, \mathcal{W} \subseteq \mathbb{C}M^d = \{ X \in M^d : X_iX_j = X_jX_i \text{ for all } i, j \}.$$

If $V = \mathcal{V}(1)$ and \mathcal{V} is minimal, then $H^\infty(\mathcal{V}) = \mathcal{M}_V = \text{Mult}(H^2_d)|_V$ from first lecture.

Hope

This framework may shed light on the isomorphism problem in the fully commutative case.

Watch out

We wish to prove that a linear $A \in \text{GL}_d$, with $A\tilde{\mathcal{W}} = \tilde{\mathcal{V}}$ is automatically bi-Lipschitz.

If we could do that even just for the special case of minimal commutative homogeneous varieties, we would obtain a new proof of a magnificent result of Hartz from the fully commutative case.
What we know about general varieties

conformal equivalence → ball-biholomorphism
completely bi-Lipschitz equivalence ← bi-Lipschitz equivalence

weak-* continuous bounded isomorphism → weak-* continuous completely bounded isomorphism
completely isometric isomorphism ← completely isometric isomorphism

algebraic isomorphism ← isometric isomorphism
Automorphisms of $H^\infty(\mathcal{B}_d)$

Theorem (Davidson & Pitts, 1998)

Every algebraic automorphism of $H^\infty(\mathcal{B}_d)$ is weak-\(^\) continuous.*
Automorphisms of $H^\infty(\mathfrak{B}_d)$

Theorem (Davidson & Pitts, 1998)

Every algebraic automorphism of $H^\infty(\mathfrak{B}_d)$ is weak-* continuous.

Corollary (Salomon-S-Shamovich ’18)

Every automorphism α of $H^\infty(\mathfrak{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \ f \in H^\infty(\mathfrak{B}_d)$$

for some $G \in \text{Aut}_b(\mathfrak{B}_d)$.
Theorem (Davidson & Pitts, 1998)

Every algebraic automorphism of $H^\infty(\mathcal{B}_d)$ is weak- continuous.*

Corollary (Salomon-S-Shamovich '18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \quad f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\tilde{\mathcal{B}}_d).$

\[
\begin{align*}
\text{Aut}_b(\tilde{\mathcal{B}}_d) = & \\
\left\{ G \in \text{Aut}(\tilde{\mathcal{B}}_d) : \sup_{X \in \mathcal{B}_d} \| \Phi_G(X) \| < \infty , \quad \sup_{X \in \mathcal{B}_d} \| \Phi_{G^{-1}}(X) \| < \infty \right\}.
\end{align*}
\]
Corollary (Salomon-S-Shamovich ’18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \ f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\tilde{\mathcal{B}}_d)$.
Automorphisms of $H^\infty(\mathcal{B}_d)$

Corollary (Salomon-S-Shamovich ’18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \ f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\mathcal{B}_d)$.

- We don’t know what are the (bounded) automorphisms of \mathcal{B}_d.
Corollary (Salomon-S-Shamovich ’18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \ f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\tilde{\mathcal{B}}_d)$.

- We don’t know what are the (bounded) automorphisms of $\tilde{\mathcal{B}}_d$.
- $\text{Aut}_b(\tilde{\mathcal{B}}_d)$ is larger than $\text{Aut}(\mathcal{B}_d) = \text{Möbius transformations}$, e.g., for each $g \in H^\infty(\mathcal{B}_d)$ invertible, $X \mapsto g(X)^{-1}Xg(X)$ is an automorphism of \mathcal{B}_d that fixes $\mathcal{B}_d(1)$.
Automorphisms of $H^\infty(\mathcal{B}_d)$

Corollary (Salomon-S-Shamovich ’18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \ f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\widetilde{\mathcal{B}}_d)$.

- We don’t know what are the (bounded) automorphisms of $\widetilde{\mathcal{B}}_d$.
- $\text{Aut}_b(\widetilde{\mathcal{B}}_d)$ is larger than $\text{Aut}(\mathcal{B}_d) = \text{Möbius transformations}$, e.g., for each $g \in H^\infty(\mathcal{B}_d)$ invertible, $X \mapsto g(X)^{-1}Xg(X)$ is an automorphism of \mathcal{B}_d that fixes $\widetilde{\mathcal{B}}_d(1)$.
- Are these all? We don’t know whether Möbius transformations and “inner” automorphisms generate $\text{Aut}_b(\widetilde{\mathcal{B}}_d)$.
Corollary (Salomon-S-Shamovich ’18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \quad f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\tilde{\mathcal{B}}_d)$.

- We don’t know what are the (bounded) automorphisms of $\tilde{\mathcal{B}}_d$.
- $\text{Aut}_b(\tilde{\mathcal{B}}_d)$ is larger than $\text{Aut}(\mathcal{B}_d) = $ Möbius transformations, e.g., for each $g \in H^\infty(\mathcal{B}_d)$ invertible, $X \mapsto g(X)^{-1}Xg(X)$ is an automorphism of \mathcal{B}_d that fixes $\tilde{\mathcal{B}}_d(1)$.
- Are these all? We don’t know whether Möbius transformations and “inner” automorphisms generate $\text{Aut}_b(\tilde{\mathcal{B}}_d)$.
- We do know that $\text{Aut}_b(\tilde{\mathcal{B}}_d) \subsetneq \text{Aut}(\tilde{\mathcal{B}}_d)$, e.g. take g unbounded.
Corollary (Salomon-S-Shamovich ’18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \quad f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\mathcal{B}_d)$.
Corollary (Salomon-S-Shamovich '18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \quad f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\mathcal{B}_d)$.

Davidson-Pitts: $0 \rightarrow G \rightarrow \text{Aut}(H^\infty(\mathcal{B}_d)) \rightarrow \text{Aut}(\mathcal{B}_d) \rightarrow 0$.
Corollary (Salomon-S-Shamovich ’18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \ f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\tilde{\mathcal{B}}_d)$.

Davidson-Pitts: $0 \to G \to \text{Aut}(H^\infty(\mathcal{B}_d)) \to \text{Aut}(\mathcal{B}_d) \to 0$.

G = “quasi-inner” automorphisms. Is every quasi-inner actually inner?
Corollary (Salomon-S-Shamovich ’18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \quad f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\tilde{\mathcal{B}}_d)$.

Davidson-Pitts: $0 \to G \to \text{Aut}(H^\infty(\mathcal{B}_d)) \to \text{Aut}(\mathcal{B}_d) \to 0$.

G = “quasi-inner" automorphisms. Is every quasi-inner actually inner?

Note: α inner \iff G inner, in the sense that

$$G(X) = g(X)Xg(X)^{-1}$$

for some $g \in H^\infty(\mathcal{B}_d)$.

Quasi-inner atomorphisms are almost inner

Corollary (Salomon-S-Shamovich '18)

Every automorphism α of $H^\infty(\mathcal{B}_d)$ has the form

$$\alpha(f) = \tilde{f} \circ G, \ f \in H^\infty(\mathcal{B}_d)$$

for some $G \in \text{Aut}_b(\mathcal{B}_d)$.

Davidson-Pitts: $0 \to G \to \text{Aut}(H^\infty(\mathcal{B}_d)) \to \text{Aut}(\mathcal{B}_d) \to 0$.

$G =$ “quasi-inner” automorphisms. Is every quasi-inner actually inner?

Theorem (Salomon-S-Shamovich '18)

Let $\alpha: H^\infty(\mathcal{B}_d) \to H^\infty(\mathcal{B}_d)$ be a quasi-inner automorphism, given by

$$\alpha(f) = \tilde{f} \circ G$$

Then for every irreducible $X \in \mathcal{B}_d$, $G(X)$ is similar to X.

That’s really all for now.