Regular dilation and Nica-covariant representation on right LCM semigroups

Boyu Li

University of Waterloo

COSy, June 2018 University of Manitoba

Question

Given a contractive representation T of a semigroup P on $\mathcal{B}(\mathcal{H})$. When can we find an "isometric dilation" V in the sense that there exists a larger Hilbert space $\mathcal{K} \supset \mathcal{H}$ so that for all $p \in P$,

$$P_{\mathcal{H}}V(p)|_{\mathcal{H}}=T(p).$$

• Sz.Nagy dilation theorem states that every contractive representation T of $\mathbb N$ has an isometric dilation.

- Sz.Nagy dilation theorem states that every contractive representation T of \mathbb{N} has an isometric dilation.
- **2** Ando extended Sz.Nagy's theorem to \mathbb{N}^2 .

- Sz.Nagy dilation theorem states that every contractive representation T of \mathbb{N} has an isometric dilation.
- **2** Ando extended Sz.Nagy's theorem to \mathbb{N}^2 .
- **3** However, there exists a contractive representation of \mathbb{N}^3 that fails to have isometric dilation.

- Sz.Nagy dilation theorem states that every contractive representation T of \mathbb{N} has an isometric dilation.
- **2** Ando extended Sz.Nagy's theorem to \mathbb{N}^2 .
- **3** However, there exists a contractive representation of \mathbb{N}^3 that fails to have isometric dilation.

Question

Any other type of dilation?

Definition

An isometric dilation (W_i) for (T_i) is called *-regular if it has an additional property that for any $n \in \mathbb{Z}^k$,

$$T^{n^+}T^{*n^-} = P_{\mathcal{H}}W^{*n^-}W^{n^+}|_{\mathcal{H}}.$$

Here, $n^+ = \max\{n, 0\}$ and $n^- = \max\{-n, 0\}$.

Theorem (Brehmer 1961)

A family of commuting contractions T_1, \dots, T_k (i.e. a contractive representation of \mathbb{N}^k) has a *-regular dilation if and only if for any $J \subseteq \{1, 2, \dots, k\}$,

$$\sum_{U \subset J} (-1)^{|U|} T(e_U) T(e_U)^* \ge 0.$$

For k = 2, let T_1, T_2 be two commuting contractions. Brehmer's condition is equivalent to

$$I - T_1 T_1^* - T_2 T_2^* + T_1 T_2 (T_1 T_2)^* \ge 0.$$

This condition is stronger than Ando's dilation, and *-regular dilation is also stronger than isometric dilation.

Our study focus on *-regular dilation on semigroups.

000000

Given a lattice ordered group (G, P), every element $g \in G$ has a unique decomposition $g = g_{-}^{-1}g_{+}$. In this case, it is fairly straightforward to extend regular dilation by saying $V: P \to \mathcal{B}(\mathcal{K})$ is a *-regular dilation for T if for all $q \in G$.

$$T(g_+)T^*(g_-) = P_{\mathcal{H}}V^*(g_-)V(g_+)\big|_{\mathcal{H}}.$$

However, lattice order condition is very restrictive. It does not contain many interesting examples of semigroups (free semigroup, Artin-type monoids, etc.). Nevertheless, we were able to characterize *-regular dilation on graph product of \mathbb{N} , which is an important class of quasi-lattice ordered semigroup.

Theorem (L. 2017)

Let T be a contractive representation of graph product of \mathbb{N} . Then the following are equivalent:

- T has a *-regular dilation;
- ② T has a minimal isometric Nica-covariant dilation;
- **3** For every finite $W \subset V$,

$$\sum_{\substack{U \subseteq W \\ is \ a \ clique}} (-1)^{|U|} T_U T_U^* \ge 0.$$

Here,
$$T_U = \prod_{v \in U} T_v$$
.

Given a unital semigroup P inside a group G, P defines a partial order \leq by $x \leq y$ when $x^{-1}y \in P$. (G,P) is called quasi-lattice ordered if for any finite subset $F \subset G$ with an upper bound, F has a least upper bound. We denote the least upper bound by $\vee F$.

Definition

Given a quasi-lattice ordered group (G, P), an isometric representation $V: P \to \mathcal{B}(\mathcal{H})$ is called isometric Nica-covariant if for any $p, q \in P$,

$$V(p)V(p)^*V(q)V(q)^* = \begin{cases} V(p \lor q)V(p \lor q)^*, p \lor q \neq \infty \\ 0, p \lor q = \infty \end{cases}$$

A semigroup P is called a right LCM semigroup if it's left-cancellative and for any $p, q \in P$, either $pP \cap qP = \emptyset$ or $pP \cap qP = rP$ for some $r \in P$. Here, r may not be unique. We denote

$$p \lor q = \{r : rP = pP \cap qP\}.$$

It is clear that when $r, s \in p \lor q$, r = su for some unit u.

Definition

Given a right LCM semigroup P, an isometric representation $V: P \to \mathcal{B}(\mathcal{H})$ is called isometric Nica-covariant if for any $p, q \in P$,

$$V(p)V(p)^*V(q)V(q)^* = \begin{cases} V(r)V(r)^*, r \in p \lor q \neq \emptyset \\ 0, p \lor q = \emptyset \end{cases}$$

We can 'reverse engineer' a definition of *-regular dilation from Nica-covariance.

Definition

We say a contractive representation T of a right LCM semigroup is *-regular if it has an isometric dilation V so that for all $p, q \in P$,

$$T(p^{-1}r)T(q^{-1}r)^* = P_{\mathcal{H}}V(p)^*V(q)|_{\mathcal{H}}.$$

Here, by convention, when $p \lor q = \emptyset$,

$$0 = P_{\mathcal{H}}V(p)^*V(q)|_{\mathcal{H}}.$$

Theorem (L.)

The following are equivalent

- \bullet T is *-regular
- 2 T has a minimal isometric Nica-covariant dilation
- **3** For any finite $F \subset P$, pick $s_U \in \forall U$ for each $U \subset F$, we have

$$Z(F) = \sum_{U \subset F} (-1)^{|U|} T(s_U) T(s_U)^* \ge 0.$$

Lemma

Suppose
$$F = \{p_1a, p_2, \cdots, p_n\}$$
. Denote

$$F_1 = \{p_1, p_2, \cdots, p_n\}$$

$$F_2 = \{a, p_1^{-1}(p_1 \vee p_2), \cdots, p_1^{-1}(p_1 \vee p_n)\}$$

Then
$$Z(F) = Z(F_1) + T(p_1)Z(F_2)T(p_1)^*$$
. Moreover, $Z(F) \ge 0$ if $Z(F_1), Z(F_2) \ge 0$.

Suppose P has descending chain condition for \leq_r . Let P_{min} be the set of minimal elements. Suppose a set P_0 satisfies

- $P_{min} \subset P_0$
- ② For all $x \in P_{min}$ and $y \in P_0$ with $x \vee y \neq \infty$, $x^{-1}(x \vee y) \in P_0$.

Suppose P has descending chain condition for \leq_r . Let P_{min} be the set of minimal elements. Suppose a set P_0 satisfies

- $P_{min} \subset P_0$
- ② For all $x \in P_{min}$ and $y \in P_0$ with $x \vee y \neq \infty$, $x^{-1}(x \vee y) \in P_0$.

Theorem (L.)

The following are equivalent:

- $Z(F) \ge 0$ for all finite $F \subset P$.
- $Z(F) \ge 0$ for all finite $F \subset P_0$.

Suppose P has descending chain condition for \leq_r . Let P_{min} be the set of minimal elements. Suppose a set P_0 satisfies

- $P_{min} \subset P_0$
- ② For all $x \in P_{min}$ and $y \in P_0$ with $x \vee y \neq \infty$, $x^{-1}(x \vee y) \in P_0$.

Theorem (L.)

The following are equivalent:

- $Z(F) \ge 0$ for all finite $F \subset P$.
- $Z(F) \ge 0$ for all finite $F \subset P_0$.

Moreover, if P is an Ore semigroup, under 'some extra assumption', these are equivalent to

• $Z(F) \ge 0$ for all finite $F \subset P_{min}$.

When $P = \mathbb{N}^n$, our theorem coincides with Brehmer's theorem.

When $P = \mathbb{N}^n$, our theorem coincides with Brehmer's theorem.

Example

When $P = \mathbb{F}_n^+$, our theorem states T is *-regular if and only if

When $P = \mathbb{N}^n$, our theorem coincides with Brehmer's theorem.

Example

When $P = \mathbb{F}_n^+$, our theorem states T is *-regular if and only if

$$I - \sum_{i=1}^{n} T(e_i)T(e_i)^* \ge 0.$$

This is no other than the well-known Frazho-Bunce-Popescu dilation of row contractions into row isometries.

① The Thompson's $F^+ = \langle x_0, x_1, \dots | x_n x_k = x_k x_{n+1}, k < n \rangle$. We can take P_0 be the set of generators.

- The Thompson's $F^+ = \langle x_0, x_1, \dots | x_n x_k = x_k x_{n+1}, k < n \rangle$. We can take P_0 be the set of generators.
- 2 The Baumslag-Solitar monoid $B_{c,d}$ which is the monoid generated by a, b with the relation $ab^c = b^d a$. We can take $P_0 = \{b, a, ba, \dots, b^{d-1}a\}$.

- The Thompson's $F^+ = \langle x_0, x_1, \dots | x_n x_k = x_k x_{n+1}, k < n \rangle$. We can take P_0 be the set of generators.
- ② The Baumslag-Solitar monoid $B_{c,d}$ which is the monoid generated by a, b with the relation $ab^c = b^d a$. We can take $P_0 = \{b, a, ba, \dots, b^{d-1}a\}$.
- **3** The semigroup $\mathbb{N} \rtimes \mathbb{N}^{\times}$ where

$$(x,a)(y,b) = (x+qy,ab).$$

We can take $P_0 = \{(1, 1), (i, p) : p \text{ prime}, 0 \le i < p\}.$

- The Thompson's $F^+ = \langle x_0, x_1, \dots | x_n x_k = x_k x_{n+1}, k < n \rangle$. We can take P_0 be the set of generators.
- ② The Baumslag-Solitar monoid $B_{c,d}$ which is the monoid generated by a, b with the relation $ab^c = b^d a$. We can take $P_0 = \{b, a, ba, \dots, b^{d-1}a\}$.
- **3** The semigroup $\mathbb{N} \rtimes \mathbb{N}^{\times}$ where

$$(x,a)(y,b) = (x+qy,ab).$$

We can take $P_0 = \{(1, 1), (i, p) : p \text{ prime}, 0 \le i < p\}.$

• For all finite type Artin monoids A_M^+ , it suffices to check P_{min} which is the set of generators.

- The Thompson's $F^+ = \langle x_0, x_1, \dots | x_n x_k = x_k x_{n+1}, k < n \rangle$. We can take P_0 be the set of generators.
- ② The Baumslag-Solitar monoid $B_{c,d}$ which is the monoid generated by a, b with the relation $ab^c = b^d a$. We can take $P_0 = \{b, a, ba, \dots, b^{d-1}a\}$.
- **3** The semigroup $\mathbb{N} \times \mathbb{N}^{\times}$ where

$$(x,a)(y,b) = (x+qy,ab).$$

We can take $P_0 = \{(1, 1), (i, p) : p \text{ prime}, 0 \le i < p\}.$

• For all finite type Artin monoids A_M^+ , it suffices to check P_{min} which is the set of generators.

Example

$$B_3^+ = \langle e_1, e_2 : e_1e_2e_1 = e_2e_1e_2 \rangle$$
. T is *-regular if and only if

$$I - T_1 T_1^* - T_2 T_2^* + T_1 T_2 T_1 T_1^* T_2^* T_1^* \ge 0.$$

Definition

Let $\Gamma = (V, E)$ be a countable simple undirected graph. Suppose $P = (P_v)_{v \in V}$ is a countable collection of right LCM semigroups. The graph product $\Gamma_{v \in V} P_v$ is the semigroup defined by taking the free product $*_{v \in V} P_v$ modulo the relation $p \in P_v$ commutes with $q \in P_u$ whenever (u, v) is an edge in the graph Γ .

Theorem (Fountain, Kambites, 2009)

Let P_v be a collection of right LCM semigroups. Then their graph product $\Gamma_{v \in V} P_v$ is also right LCM.

Theorem (L.)

Let P_{Γ} be a graph product of a collection of right LCM smeigroups $(P_v)_{v \in V}$, and $T: P_{\Gamma} \to \mathcal{B}(\mathcal{H})$ be a contractive representation. Then the following are equivalent:

• For every finite set $F \subset P_{\Gamma}$, $Z(F) \geq 0$.

Theorem (L.)

Let P_{Γ} be a graph product of a collection of right LCM smeigroups $(P_v)_{v \in V}$, and $T: P_{\Gamma} \to \mathcal{B}(\mathcal{H})$ be a contractive representation. Then the following are equivalent:

- For every finite set $F \subset P_{\Gamma}$, $Z(F) \geq 0$.
- **2** For every finite set $e \notin F \subset \bigcup_{v \in V} P_v$, $Z(F) \geq 0$.

If we take $P_v = \mathbb{N}$ for all v, it is clear that P_v has the descending chain property and the only minimal element is its generator e_v . This recovers our earlier result of *-regular dilation on graph products of \mathbb{N} .

Example

If the graph is a complete graph, the graph product becomes a direct product. We say two representation T_v, T_u *-commute if $T_v(p)$ *-commute with each $T_u(q)$ for all $p \in P_v, q \in P_u$ ($u \neq v$). As a corollary of our main result, graph product of *-commuting *-regular representation of right LCM semigroups are also *-regular.

Thank you