Complexity and capacity of quantum channels

Rupert Levene

University College Dublin

Joint work with Vern Paulsen and Ivan Todorov

COSy 2018

Overview

1. Classical channels

Confusability graphs and zero-error capacity (Shannon)

- Operator systems from quantum channels Non-commutative confusability graphs (Duan-Severini-Winter) New parameters for operator systems: quantum complexity and quantum subcomplexity
- 3. Application: estimating quantum zero-error capacity

1. Classical channels

Classical channels

- A noisy channel N: X → Y with input alphabet X, output alphabet Y is a map N: X → {non-empty subsets of Y}
- ▶ View *N*(*x*) as the set of possible outputs of *N*, given input *x*
- Equivalently: *N* is an (X, Y) bipartite graph for which every $x \in X$ emits at least one edge.

Example

Let
$$N_5 \colon \mathbb{Z}_5 \rightsquigarrow \mathbb{Z}_5$$
, $N(x) = \{x, x+1\}$ for $x \in \mathbb{Z}_5$.

The confusability graph and complexity

Let $N: X \rightsquigarrow Y$ be a channel. Say $x_1, x_2 \in X$ with $x_1 \neq x_2$ are *confusable* for N if

$$N(x_1) \cap N(x_2) \neq \emptyset.$$

Definition

The confusability graph G_N has

- vertex set = X, the input alphabet of N;
- edges = the confusable pairs for *N*.

Every graph G with vertex set X is of the form $G = G_N$ for some classical channel $N: X \rightsquigarrow Y$, for some set Y.

Definition

The complexity of G is the smallest possible size of Y.

1. Classical channels

2. Quantum channels

One-shot zero-error capacity $\alpha(\mathbf{N})$

Shannon's one-shot zero-error capacity $\alpha(N)$ is max number of input letters x_1, \ldots, x_{α} that aren't confusable by N:

- $N(x_i) \cap N(x_j) = \emptyset$ if $i \neq j$; or equivalently,
- $\{x_1, \ldots, x_{\alpha}\}$ is independent in G_N (i.e., no edge $x_i x_j$ is in G_N)

Example

 $\alpha(N_5) = 2$, with independent set $A = \{0, 2\}$.

Shannon zero-error capacity $\Theta(N)$

For $r \ge 1$, write $N^r \colon X^r \rightsquigarrow Y^r$ for "*r* parallel uses of *N*".

Definition

The Shannon zero-error capacity of a classical channel N is

 $\Theta(\mathbf{N}) = \lim_{r \to \infty} \alpha(\mathbf{N}^r)^{1/r}.$

Example (Lovász, 1979)

 $\Theta(N_5) = \alpha (N_5^2)^{1/2} = \sqrt{5}.$

 Θ is generally hard to compute! For example, $\Theta(N_7)$ is unknown.

2. Quantum channels

Quantum channels, non-commutative confusability graphs

Write $M_n = M_n(\mathbb{C})$ and $M_{k \times n} = M_{k \times n}(\mathbb{C})$.

Let $\Phi: M_n \to M_k$ be a quantum channel: a completely positive trace-preserving linear map. Equivalently: Φ is of the form $\Phi(x) = \sum_{i=1}^m A_i x A_i^*$ where $A_1, \ldots, A_m \in M_{k \times n}$ with $\sum_{i=1}^m A_i^* A_i = I_n$ are "Kraus operators" for Φ .

Definition (Duan-Severini-Winter 2013)

The non-commutative confusability graph of Φ is

$$\mathcal{S}_{\Phi} = \operatorname{span}\{A_i^*A_j \colon 1 \leq i, j \leq m\} \subseteq M_n.$$

 S_{Φ} isn't a graph at all! S_{Φ} is an *operator system* in M_n : a unital subspace with $s \in S_{\Phi} \iff s^* \in S_{\Phi}$.

Example

 $A \in M_{k \times n}$ an isometry, $\Phi \colon M_n \to M_k$, $x \mapsto AxA^* \implies S_{\Phi} = \mathbb{C}I_n$.

Why call S_{Φ} a non-commutative graph?

Let G be a graph with vertex set $\{1, 2, ..., n\}$ and let $E_{i,j}$ be the (i,j) matrix unit in M_n .

Definition

The operator system of G is

 $\mathcal{S}_G = \operatorname{span}\{E_{x,x'}: x, x' \text{ equal or an edge of } G\} \subseteq M_n.$

Identifying G with S_G : graphs become special operator systems.

Non-commutative conf. graphs generalise classical ones

Definition

The quantum version of a classical channel $N: X \rightsquigarrow Y$ is

$$\Phi_{N} \colon \mathcal{M}_{|X|} \to \mathcal{M}_{|Y|}, \quad \Phi_{N}(\mathcal{E}_{x,x'}) = \delta_{xx'} \frac{1}{|\mathcal{N}(x)|} \sum_{y \in \mathcal{N}(x)} \mathcal{E}_{y,y}.$$

Observation

 $\mathcal{S}_{\Phi_{N}}=\mathcal{S}_{G_{N}}$

Example

$$\begin{split} \Phi_{N_{5}} \colon M_{5} \to M_{5}, \quad \begin{bmatrix} z_{0} & * & * & * & * \\ * & z_{1} & * & * & * \\ * & * & z_{2} & * & * \\ * & * & * & z_{3} & * \\ * & * & * & z_{4} \end{bmatrix} \mapsto \frac{1}{2} \begin{bmatrix} z_{0} + z_{4} & 0 & 0 & 0 & 0 \\ 0 & z_{2} + z_{1} & 0 & 0 & 0 \\ 0 & 0 & z_{1} + z_{2} & 0 & 0 \\ 0 & 0 & 0 & z_{2} + z_{3} & 0 \\ 0 & 0 & 0 & 0 & z_{3} + z_{4} \end{bmatrix} \\ has \\ \mathcal{S}_{\Phi_{N_{5}}} = \left\{ \begin{bmatrix} * & * & 0 & 0 & * \\ * & * & * & 0 & 0 \\ 0 & * & * & 0 \\ 0 & 0 & * & * \\ * & 0 & 0 & * & * \\ * & 0 & 0 & * & * \\ * & 0 & 0 & * & * \end{bmatrix} \right\} = \mathcal{S}_{G_{N_{5}}}. \end{split}$$

1. Classical channels

2. Quantum channels

The quantum complexity of an operator system

Proposition (Duan-Severini-Winter 2013)

Every operator system $S \subseteq M_n$ is of the form $S = S_{\Phi}$ for some quantum channel $\Phi : M_n \to M_k$ and some $k \in \mathbb{N}$.

Definition

The *quantum complexity* of the operator system S is $\gamma(S) := \min k$.

Theorem (LPT18 - a connection to spectral graph theory)

For a graph G without isolated vertices, $\gamma(S_G)$ is the "minimum semidefinite rank" of G: the minimum rank of a positive semidefinite matrix with full support in S_G . (In particular, $\gamma(S_G) \leq n$.)

Example (for general operator systems, we can have $\gamma(\mathcal{S}) > n$)

$$\gamma(\mathcal{C}_2) = 3$$
 where $\mathcal{C}_2 = \{ \begin{bmatrix} \lambda & \mathsf{a} \\ b & \lambda \end{bmatrix} : \lambda, \mathsf{a}, \mathsf{b} \in \mathbb{C} \}.$

The quantum subcomplexity of an operator system

Definition

The *quantum subcomplexity* of an operator system $S \subseteq M_n$ is

 $\beta(\mathcal{S}) = \min\{\gamma(\mathcal{T}) \colon \mathcal{T} \subseteq \mathcal{S} \text{ an operator subsystem}\}.$

Theorem (L-Paulsen-Todorov 2018)

For a graph G, the number $\beta(S_G)$ coincides with the orthogonal rank of the complement of G: the smallest k for which there exist $\xi_1, \ldots, \xi_n \in \mathbb{C}^k$ so that

$$\langle \xi_i, \xi_j \rangle \neq \mathbf{0} \implies ij \text{ is an edge of } G.$$

$\beta(\mathcal{S})$ as a rank minimisation problem

Proposition

If $S \subseteq M_n$ is an operator system, then $\beta(S) = \min \operatorname{rank} B$, taken over all $B \in M_m(S)$ with $B \ge 0$ and $\sum_i B_{ii} = I_n$, and all $m \in \mathbb{N}$.

Proposition

The constant-diagonal operator system $C_n \subseteq M_n$ has $\beta(C_n) = \lceil \sqrt{n} \rceil$.

Example (n = 4)

$$B = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & -1 & -1 & 0 & -1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 0 & 1 \end{bmatrix} \in M_2(\mathcal{C}_4)^+, \text{ so } \beta(\mathcal{C}_4) \leq \operatorname{rank} B = 2.$$

3. Capacity estimates

The quantum zero-error capacity of an operator system

Let $S \subseteq M_n$ be an operator system.

Definition

The quantum one-shot zero error capacity $\alpha(S)$ is the largest k for which USU^* has a $k \times k$ corner containing only diagonal matrices, for some unitary U.

Definition

The quantum zero-error capacity of S is $\Theta(S) = \lim_{r \to \infty} \alpha(S^{\otimes r})^{1/r}$.

- ► These generalise Shannon: for G the confusability graph of a classical channel N, we have α(N) = α(S_G) and Θ(N) = Θ(S_G).
- In QIT, it is of interest to compute or estimate Θ(S_Φ) for a quantum channel Φ.

A new upper bound on quantum zero-error capacity

Lemma

 β is submultiplicative: $\beta(S_1 \otimes S_2) \leq \beta(S_1)\beta(S_2)$.

Proof.

 $S_{\Phi_1\otimes\Phi_2} = S_{\Phi_1}\otimes S_{\Phi_2} \implies \gamma$ is submultiplicative; hence β is too.

Theorem (L-Paulsen-Todorov)

 $\alpha(\mathcal{S}) \leq \Theta(\mathcal{S}) \leq \beta(\mathcal{S}) \leq \gamma(\mathcal{S}) \text{ for any operator system } \mathcal{S} \subseteq M_n.$

Proof.

First show that $\alpha \leq \beta$; then $\alpha(S^{\otimes r}) \leq \beta(S^{\otimes r}) \leq \beta(S)^r$ by Lemma. Now take $\lim_{r\to\infty} (\cdot)^{1/r}$.

Open problem: can $\beta(S \otimes T) < \beta(S)\beta(T)$ ever occur? (For γ : yes!)

1. Classical channels

3. Capacity estimates

Lovász type bounds on Θ

Definition

The Lovász theta number of a graph *G* is $\vartheta(G) := \max ||I_n + T||$, taken over all $T \in S_G^{\perp}$ with $I_n + T \ge 0$.

Theorem (Lovász, 1976)

 $\Theta(N) \leq \vartheta(G_N)$ for all classical channels N.

Definition

The quantum Lovász theta number of an operator system $S \subseteq M_n$ is $\widetilde{\vartheta}(S) := \max ||I_{mn} + T||$ over $m \in \mathbb{N}$, $T \in M_m(S^{\perp})$ with $I_{mn} + T \ge 0$.

Theorem (Duan-Severini-Winter 2013)

 $\Theta(S) \leq \widetilde{\vartheta}(S)$ for all operator systems S in M_n . Moreover, $\widetilde{\vartheta}(S_G) = \vartheta(G)$, so this generalises Lovász's theorem.

eta sometimes beats the Lovász $\widetilde{artheta}$ bound

Theorem (L-Paulsen-Todorov)

There exist operator systems \mathcal{R}_t for $t \in \mathbb{N}$ so that

$$\Theta(\mathcal{R}_t) \sim \beta(\mathcal{R}_t) \ll \widetilde{\vartheta}(\mathcal{R}_t).$$

Sketch.

Consider

$$\mathcal{R}_t = \mathcal{C}_{t^2} \oplus \mathbb{C}I_t \subseteq M_{t^2+t}$$

where $C_{t^2} = \{ all constant-diagonal matrices in <math>M_{t^2} \}$. We have

 $\blacktriangleright \ \widetilde{\vartheta}(\mathcal{R}_t) \geq \widetilde{\vartheta}(\mathcal{C}_{t^2}) = t^2,$

►
$$\beta(\mathcal{R}_t) = \beta(\mathcal{C}_{t^2}) + \beta(\mathbb{C}I_t) = t + t = 2t$$
, and

► $t = \alpha(\mathbb{C}I_t) \leq \Theta(\mathcal{R}_t) \leq \beta(\mathcal{R}_t) = 2t.$

Thank you!