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Overview

1. Classical channels
Confusability graphs and zero-error capacity (Shannon)

2. Operator systems from quantum channels
Non-commutative confusability graphs (Duan-Severini-Winter)

New parameters for operator systems:
quantum complexity and quantum subcomplexity

3. Application: estimating quantum zero-error capacity
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1. Classical channels



Classical channels

» Anoisy channel N: X ~- Y with input alphabet X, output
alphabet Yis a map N: X — {non-empty subsets of Y}

» View N(x) as the set of possible outputs of N, given input x

» Equivalently: N is an (X, Y) bipartite graph for which every x € X
emits at least one edge.

Example

Let Ns: Zs ~» Zs, N(x) = {x,x + 1} forx € Zs.
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The confusability graph and compleX|ty

Let N: X ~> Y be a channel.
Say x1,Xxz € X with xq # x; are
confusable for N if N

N(x1) N N(xz) # 0.

Definition
The confusability graph Gy has “
> vertex set = X, the input alphabet of N; G K

» edges = the confusable pairs for N.

Every graph G with vertex set X is of the form G = Gy for some
classical channel N: X ~~ Y, for some set Y.

Definition

The complexity of G is the smallest possible size of Y.
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One-shot zero-error capacity a(N)
Shannon’s one-shot zero-error capacity «(N) is max number of input

letters xq, . . ., X, that aren’t confusable by N:

» N(x;) N N(x;) = D if i # j; or equivalently,

» {X1,...,Xq} isindependent in Gy (i.e., no edge x;x; is in Gy)
Example

a(Ns) = 2, with independent set A = {0, 2}.
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Shannon zero-error capacity O(N)

Forr > 1, write N": X" ~» Y" for “r parallel uses of N".
Definition

The Shannon zero-error capacity of a classical channel N is

O(N) = lim a(N")".

r—oo

Example (Lovasz, 1979)
O(Ns) = a(N2)"/2 = /5.

© is generally hard to compute! For example, ©(N7) is unknown.
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2. Quantum channels



Quantum channels, non-commutative confusability graphs
Write M, = M, (C) and Mgy, = My (C).

Let @: M, — M, be a quantum channel: a completely positive
trace-preserving linear map.

Equivalently: @ is of the form ®(x) = >"" ; AixA} where

Aq, ... An € My, with ZL A7A; = I, are "Kraus operators” for ®.

Definition (Duan-Severini-Winter 2013)

The non-commutative confusability graph of & is

So = span{A/A;: 1 <i,j<m} CM,.
Sg isn’t a graph at all! Sg is an operator system in My,: a unital
subspace withs € S < s* € Sp.

Example
A € My, anisometry, @: M, — My, x — AxA* — Sg = Cl,,.
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Why call S a non-commutative graph?

Let G be a graph with vertex set {1,2,...,n} and let £; ; be the (i, )
matrix unit in M,,.

Definition

The operator system of G is

Sc = span{Ey , : x,x’ equal or an edge of G} C M,,.

Example

Identifying G with Sg: graphs become special operator systems.
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Non-commutative conf. graphs generalise classical ones
Definition
The quantum version of a classical channel N: X ~~ Yis

Dy M|X| — M|y|, q)N(Ex,x’) = XX/’ Z Eyy
yEN (%)

Observation

Sa, = Say
Example
Zo * * * * Z06L24 0 8 8 8
P Zo+27
(DNlM5—>M5, * ok Zp k% i—}l 0 0 z1+zz O 0
> L 21 0 0 0 z4z; 0
Za 0 0 o0 0 73424
has
* % 00 %
*xx00
S = 0% *x0 =8 .
q)NS 00 * x * Cns
* 00 % *x
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The quantum complexity of an operator system

Proposition (Duan-Severini-Winter 2013)

Every operator system S C M, is of the form S = Sg for some
quantum channel & : M, — My andsome k € N.

Definition
The quantum complexity of the operator system S is y(S) := mink.

Theorem (LPT18 - a connection to spectral graph theory)

For a graph G without isolated vertices, v(S¢) is the “minimum
semidefinite rank” of G: the minimum rank of a positive semidefinite
matrix with full support in Sg. (In particular, v(Sg) < n.)

Example (for general operator systems, we can have v(S) > n)
7(C2) =3 whereC; = {[24] : X\,a,b € C}.
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The quantum subcomplexity of an operator system

Definition
The quantum subcomplexity of an operator system S C M, is

B(S) = min{~(T): T C S an operator subsystem}.

Theorem (L-Paulsen-Todorov 2018)

For a graph G, the number [3(S¢) coincides with the orthogonal rank of
the complement of G: the smallest k for which there exist
&1,...,& € Cksothat

(&,&) # 0 = ijisanedge of G.
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B(S) as a rank minimisation problem

Proposition

IfS C M, is an operator system, then 3(S) = minrank B, taken over
allB € My, (S)withB > 0and ) _;Bjj = Ip,andallm € N.
Proposition

The constant-diagonal operator system C, C M, has 3(C,) = [v/n].

Example (n = 4)
100 110 -11 0
01 1T 01T 0 0 —1
01 1T 01T 0 0 —1
_ 1 1.0 0 1/0-11 0 + _
B_E 0O 1T 1T O|T 0 0 —1 EMZ(C4) ,SOﬁ(C4)§rankB—2.
—10 0 -10 1 -10
100 1/0-110
0 -1-10[-10 0 1
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3. Capacity estimates



The quantum zero-error capacity of an operator system

Let S C M, be an operator system.

Definition
The quantum one-shot zero error capacity «(S) is the largest k for

which USU* has a k x k corner containing only diagonal matrices, for
some unitary U.

Definition
The quantum zero-error capacity of S is ©(S) = l_i)m a(S®N)Vr,
r—0o0

> These generalise Shannon: for G the confusability graph of a
classical channel N, we have a(N) = a(Sg) and O(N) = O(Sg).

» In QIT, it is of interest to compute or estimate ©(Sg) for a
quantum channel ®.
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A new upper bound on quantum zero-error capacity

Lemma
B is submultiplicative: 5(S1 ®@ S;) < B(S51)5(Sz).

Proof.
So,00, = So, ® Sp, = v is submultiplicative; hence 3 is too. [

Theorem (L-Paulsen-Todorov)

a(S) < O(S) < B(S) < ~(S) forany operator system S C Mp,.

Proof.

First show that o < 3; then (S®") < B(8%") < B(S)" by Lemma.
Now take lim;,_,oo(-)"/". O

Open problem: can 3(S ® T') < 3(S)B(T) ever occur? (For v: yes!)

3. Capacity estimates 14 /16



Lovasz type bounds on ©

Definition
The Lovasz theta number of a graph G is ¥(G) := max ||/, + T||, taken
overall T Sé with/, +T > 0.

Theorem (Lovasz, 1976)
O©(N) < Y¥(Gn) forall classical channels N.

Definition
The quantum Lovasz theta number of an operator system & C M, is
9(S) := max ||, + T|| overm € N, T € M,,(S+) with I, + T > 0.

Theorem (Duan-Severini-Winter 2013)
O(S) < J(S) forall operator systems S in M,

Moreover, 9(Sg) = 1(G), so this generalises Lovész’s theorem.
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[ sometimes beats the Lovasz Y bound

Theorem (L-Paulsen-Todorov)

There exist operator systems R fort € N so that

O(Re) ~ B(Re) < V(Ry).

Sketch.
Consider
Rt =Cp ®Clt C Mg,
where C;z = {all constant-diagonal matrices in M,z }. We have
> 9(Re) > V(Cp) = 12,
» B(R¢) = B(C2) + B(Cly) =t +t = 2t,and
» t =a(Cl) <O(R:) < B(Re) = 2t.

3. Capacity estimates

16/16



Thank you!
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