
Analysis Comprehensive Examination

Department of Mathematics, University of Manitoba

January 29, 2016

This examination contains three parts, Part A, Part B and Part C. Part A and Part B cover

the core material described in unit I of the Analysis Comprehensive Syllabus; Part C covers the

specialized material described in units II.(b) and II.(c) of the syllabus. The total time of the

examination is six hours. Part A has six questions worth 10 points each, and you must attempt

all questions in this part for a total possible score of 60 points. Part B has four questions worth

10 points each, of which you must attempt two, for a total possible score of 20 points. Part C has

six questions worth 15 points each, of which you must attempt four, for a total possible score of 60

points. If you attempt in Part 2 or Part 3 more than the required number of questions, you must

clearly indicate which questions are to be graded. If it is not clearly indicated, solutions to those

appearing early in the booklet will be graded. You need to achieve at least 105 points, which is

75% of the total 140 attemptable points on the three parts, in order to pass the examination. No

text or reference books, notes, calculators or aids are allowed in the exam.
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Part A

Solve all the problems in this part.

1. Determine whether the statement is true or false. Justify your answer.

(a) If f : [0, 1] 7→ R is absolutely continuous on [0, 1], then f is a function of bounded

variation.

(b) If f : [0, 1] 7→ R is continuous on [0, 1], differentiable on (0, 1), and such that f ′ is

continuous on (0, 1), then f is a function of bounded variation.

2. Is it true that the series
∞∑
n=3

(−1)n

n lnn
sin
(

1 +
x

lnn

)
is uniformly convergent on [−1, 1]. Justify your answer.

3. Evaluate the following limit:

lim
x→0

1

x

∫ x

0

(
1− sin

1

u

)
du.

4. Let Γ be the unit circle |z| = 1 with the positive orientation. Find∫
Γ

z̄
e2z

z3
dz.

5. Evaluate the following integral using residue theory:∫ ∞
−∞

dx

x2 − i
.

6. Let S be a dense subset of R and f : R→ R. Show that f is measurable if and only if the set

{x ∈ R, f(x) ≥ a} is measurable for each a ∈ S.
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Part B

Choose 2 from the following 4 problems to solve.

1. Evaluate the following line integral:∮
C

(
zy sin(xy) + (x+ y)2

)
dx+

(
(x+ y)2 + zx sin(xy)

)
dy +

(
yz3 − cos(xy)

)
dz,

where C is the curve of intersection of surfaces z =
√
x2 + y2 and (x− 1)2 + y2 = 1, directed

counterclockwise when viewed from above.

2. Suppose that 0 < p <∞, and f is a continuous real valued function on [a, b], where a, b ∈ R.

Is it true that, for every ε > 0, there exists an algebraic polynomial P with rational coefficients

such that (∫ b

a

|f(x)− P (x)|pdx
)1/p

< ε.

3. Recall that Legendre polynomials form an orthogonal set with respect to the inner product

(f, g) =
∫ 1

−1
f(t)g(t)dt. The first four Legendre polynomials (normalized so that their values

at 1 are 1) are (you do not have to prove this):

P0(x) = 1

P1(x) = x

P2(x) =
1

2

(
3x2 − 1

)
P3(x) =

1

2
(5x3 − 3x)

Find a0, a1, a2, a3 ∈ R such that the polynomial p(x) = a0 +a1x+a2x
2 +a3x

3 is the polynomial

of best approximation to f(x) = x4 from the space of algebraic polynomials of degree ≤ 3 (in

the L2[−1, 1] norm).

4. Recall that a monotonic real-valued function defined on an interval is differentiable almost

everywhere on the interval. Let f : [0, 1]→ R be a non-decreasing function. Show that∫ 1

0

f ′(x) dx ≤ f(1)− f(0).

(You may assume without proof that
∫ 1

0
f ′ exists.) Hint: Extend the definition of f to [0, 2]

by defining f(x+ 1) = f(1) for x ∈ (0, 1]. Then consider

Fn(x) =
f(x+ 1

n
)− f(x)
1
n

, n ≥ 1.
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Part C

Choose 4 from the following 6 problems to solve.

1. Let (X,A, µ) be a measure space and E1, E2 ∈ A. Show that

µ(E1 ∪ E2) + µ(E1 ∩ E2) = µ(E1) + µ(E2).

2. Let (X,A, µ) be a measure space. Suppose that (fn) ⊂ L1(µ), f ∈ L1(µ), and fn → f µ-a.e.

on X. Show that
∫
|fn − f |dµ→ 0 if and only if

∫
|fn|dµ→

∫
|f |dµ.

3. Let (X,A, µ) be a finite measure space, B a sub-σ-algebra ofA, and ν = µ|B. Given f ∈ L1(µ),

show that there exists g ∈ L1(ν) such that
∫
E
fdµ =

∫
E
gdν for all E ∈ B.

4. Find a Möbius transformation that maps the triple 0, 1, i to, respectively, 2,−i, 1.

5. Let G be an open set in the complex plane C and let G = ∪∞n=1Kn, where {Kn} is a sequence

of compact sets satisfying Kn ⊂ int(Kn+1) for all n. Denote by C(G) the complete metric

space of all continuous complex-valued functions defined on G with the metric ρ given by

ρ(f, g) =
∞∑
n=1

1

2n

dn(f, g)

1 + dn(f, g)
(f, g ∈ C(G)),

where dn(f, g) = sup{|f(z)− g(z)| : z ∈ Kn} for each n. Let H(G) be the subspace of C(G)

consisting of all analytic functions on G.

Suppose that (fm) ⊂ H(G) is a sequence and f ∈ C(G) such that limm→∞ fm = f in the

ρ-topology of C(G). Show that f ∈ H(G).

6. Suppose that G is an open connected set in C. Show that a non-constant harmonic function

u on G is an open mapping. (You may assume without proof that u is not a constant function

on any nonempty open subset of G.)
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